Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 145 - 152 of 2415 in category All (newest first):


Biliverdin nanoparticles pave the way for biodegradable imaging agents

nanoparticleNanoparticles have shown a lot of promise in biomedical applications. However, accumulation of nanoparticles in the liver is a major concern, and may be one of the greatest barriers to the widespread adoption of nanoparticles in the clinic. This is especially true for metallic nanoparticles, since the long-term effects of their accumulation in the liver has not been widely studied. A team of researchers has looked to nature for inspiration in solving this problem. They decided to use biliverdin, a bile pigment, as the building block for their nanoparticles.

Nov 18th, 2019

Enhancing wireless in vivo sensor readouts with 'divergent exceptional points'

RF-sensorRadio-frequency wireless sensors are essential components of smart objects and internet-of-things components. However, these passive microsensors suffer from poor quality of data and sensitivity due to the environments they operate in and the need for sensors with extremely small footprints. Researchers have recently shown that a wireless system locked to an exceptional point (EP) can enhance the sensitivity of passive wireless sensors in practical applications. New work has theoretically introduced and experimentally demonstrated a new class of parity-time-symmetric RF electronic and telemetric systems, which combine EPs with divergent points.

Nov 12th, 2019

Biodegradable microresonator implants for medical applications

microresonatorThe goal of the electronics industry has always been to build durable devices with stable performance that last a very long time. 'Transient electronics', however, are designed with the exact opposite goal: to dissolve harmlessly into their surroundings after functioning for a certain amount of time. The fabrication process and the in vivo powering of medical implants that are only made from biodegradable materials are two of the challenges associated with transient electronics. Researchers demonstrate wirelessly powered, frequency-selective magnesium microstructures as promising candidates to be used as power receiver, microheaters and triggering elements for biodegradable implantable medical devices.

Nov 11th, 2019

Paving the way for inorganic perovskites' use in high-performance electronic applications

photodetectorNew work provides insight into the control over phase and ordering during halide perovskite epitaxial growth and expands the selection of photoactive materials for growing epitaxial halide perovskites that can be exploited in high-performance electronic applications. Hybrid organic-inorganic halide perovskite has attracted tremendous attention as an exceptional new class of semiconductors for solar harvesting, light emission, lasing and thin-film electronics. However, the toxicity of lead devices and lead manufacturing combined with the instability of organic components have been two key barriers to widespread application. Tin-based inorganic halide perovskites have been considered promising substitutes for their lead analogues.

Nov 7th, 2019

3D printing batteries - an overview

microbatteryAs an advanced fabrication technique, 3D printing has been increasingly utilized to fabricate complex 3D objects via digitally controlled deposition of phase change and reactive materials and solvent-based inks. When it comes to batteries, 3D printing has several significant advantages compared with conventional battery fabrication technologies and it opens new avenues for the rapid fabrication of 3D-structured batteries with complex architectures and high performance. In next generation futuristic 3D printed energy architectures batteries and supercapacitors could be printed in virtually any shape.

Nov 4th, 2019

The rise of graphynes

graphyneGraphyne is a little known sibling of graphene. Simulations have shown that graphyne's conduction electrons travel extremely fast - as they do in graphene - but in only one direction. That property could help researchers design faster transistors and other electronic components that process one-way current. Graphyne is distinct in being composed of sp and sp2 carbon atoms, which contrasts with graphene containing only sp2 carbon. The coexistence of sp and sp2 carbons in graphyne gives rise to unique physical properties, such as high conductivity and large carrier mobility.

Oct 31st, 2019

Valleytronics in a monolayer semiconductor at room temperature

valleytronicsThe basic idea of valleytronics is to pass information through two-dimensional (2D) and other very thin conducting materials using the energy valleys - or energy extrema - in their conduction and valence bands. Information can be transmitted by controlling an electron's association with a valley - a manipulation that can be achieved using electric fields, magnetic fields and circularly polarized light. Researchers now have demonstrated a room-temperature approach to manipulating quantum-information carriers, which is usually volatile at room temperature, in a monolayer WSe2 semiconductor.

Oct 24th, 2019

Fabricating nano- to macroscale hierarchical porous structures in a 3D printer

3D-printingHierarchical structures, spanning multiple length scales from nano- to macroscales, are very common in nature; but only in recent years have they been systematically studied in materials science, in order to understand the specific effects they can have on the mechanical properties of various systems. Researchers have developed a straightforward, cost-efficient, and fast route to fabricate hierarchical porous structures in a 3D printer. With this technique they can process nanoporous materials and fabricate structures from nanometer to centimeter scale.

Oct 22nd, 2019