Open menu

Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 161 - 168 of 2140 in category (newest first):

 

Graphene for batteries, supercapacitors and other energy storage

batteriesGraphene currently is the most studied material on the planet - this is especially true for charge storage and the results from many laboratories confirm its potential to change today's energy-storage landscape. Specifically, graphene could present several new features for energy-storage devices, such as smaller capacitors, completely flexible and even rollable energy-storage devices, transparent batteries, and high-capacity and fast-charging devices.

Jul 20th, 2017

Three-dimensional nanosheet electrodes for efficient electrochemical and photoelectrochemical water splitting

catalystDeveloping highly active electrocatalysts for photoelectrochemical water splitting is critical to bringing solar/electrical-to-hydrogen energy conversion processes into reality. Researchers have developed a novel 3D hierarchical hybrid electrocatalyst grown on electrochemically exfoliated graphene. The researchers then further integrated the hybrid nanosheets with a macroporous silicon photocathode, and the results show that it can enable highly active solar-driven photoelectrochemical water splitting in both basic media and real river water.

Jul 20th, 2017

Capitalizing on nanotechnology to address fungal infections topically

epidermis_with_nanoparticlesCutaneous fungal infections involving the skin, hair, or nails affect an estimated 25% of the world's population, and accounts for millions of outpatient visits. Currently, deep fungal infection require systemic therapy, which can pose a range of side effects or drug interactions depending on the clinical scenario. Investigators now have demonstrated the antifungal activity of nitric oxide generating nanoparticles against dermatophytes well known to cause invasive cutaneous infections.

Jul 19th, 2017

Carbon nanotube wools for greenhouse gas mitigation and bullet-proof clothing

carbon_nanotube_woolTurning atmospheric carbon dioxide (CO2) into valuable products seems like a great idea to help remove this greenhouse gas to mitigate climate change. Using a process of molten carbonate electrolytic transformation of CO2 to carbon nanotubes, researchers have now demonstrated 'carbon nanotube wool'. These are the first carbon nanotubes that can be directly woven into a cloth as they are of macroscopic length (over 1mm) and are cheap to produce. The sole reactant to produce the carbon nanotube wools is carbon dioxide. This transforms CO2 from a pollutant into a useful, valuable resource.

Jul 18th, 2017

Nanotechnology for developing countries

solar_panelsIn addition to economic, social and political measures, new technologies can provide tools for poverty reduction. Many people in developing countries don't just lack money. Especially in remote regions, many also lack access to electricity, clean drinking water and basic sanitation, cooking facilities, healthcare, adequate housing, etc. The innovative solutions for developing countries supported by the use of nanotechnologies mainly target five areas: water; medicine; agriculture; food; and energy.

Jul 13th, 2017

A true random number generator based on solution-processed semiconducting carbon nanotubes

measurement_curvesNew work demonstrates that one of the most important security primitives, i.e. a true random number generator (TRNG), can be realized within the rigorous constraints required for future Internet-of-Things electronics. The solution-processability of semiconducting single-walled carbon nanotubes allows to meet these strict constraints by simultaneously enabling small-scale, low cost fabrication of low-power, ultra-thin, printable, and mechanically flexible security devices. This presents a significant milestone in enabling higher level cryptographic solutions using scalable solution processing.

Jul 12th, 2017

Using graphene as transparent electrodes and alignment layers for liquid crystal devices

liquid_crystalsIn conventional liquid crystal displays (LCD), the liquid crystal (LC) material is contained in conventional LC cells, where the polyimide layers are used to align the LC homogeneously in the cell, and the transmissive indium tin oxide (ITO) electrodes are used to apply the electric field to reorient the LC along the field. Now, researchers have experimentally demonstrated that monolayer graphene films on the two glass substrates can function concurrently as the LC alignment layers and the transparent electrodes to fabricate an LC cell, without using the conventional polyimide and ITO substrates.

Jul 11th, 2017

Controlling multi-modal nanolasing with plasmonic superlattices

plasmonicsMulti-modal lasers can emit at different wavelengths simultaneously and are important for applications ranging from multiplexed signal processing to multi-color biomedical imaging. To achieve multi-wavelength capabilities, however, the single-color lasers need to be operated as an array of lasers, which dramatically increases the unit cost and precludes their integration with compact photonic devices. Researchers now have demonstrated that multi-modal lasing with control over the different colors can be achieved in a single device.

Jul 10th, 2017