Open menu

Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 193 - 200 of 2131 in category (newest first):

 

Emerging redox flow battery technology for grid-scale storage

redoc_flow_batteryFlow batteries are regarded as one of the most promising energy storage technologies for stationary large-scale storage because the power capability and the energy storage capability of these storage systems can be sized independently, which benefits load balancing, peak shaving, power conversion and stand-alone power system. As an emerging rechargeable battery technology, lithium redox flow batteries (Li-RFB) represent an important advance which is distinct from conventional solid-state rechargeable batteries. Researchers have now demonstrated an all-metallocene-based non-aqueous redox flow battery with stable cycling performance and comparable energy density with current related energy storage technologies.

Posted: Feb 27th, 2017

A new contact to the two-dimensional world

MXeneNext-generation electronics will be based on two-dimensional semiconductors, which have a significantly higher resistance than conventional silicon-based electronics. This development is significantly limited by the high contact resistance between the metal electrode and the 2D semiconductor. To minimize the energy dissipation and improve the device performance, it is critical to reduce the contact resistance. Researchers have now shown that MXenes, a class of 2D metal carbides or nitrides, can achieve low contact resistance with 2D semiconductors.

Posted: Feb 22nd, 2017

A nanotechnology approach to generating electricity from water evaporation

water_evaporationResearchers have shown that evaporation from the surface of a variety of nanostructured carbon materials can be used to generate electricity: the evaporation driven water flow in nanoporous carbon film converts ambient thermal energy into electricity via the water molecules' interaction with the carbon material. The team fabricated their device from a sheet of carbon black and two electrodes made from multi-walled carbon nanotubes. When inserted into deionized water, an open-circuit voltage between the two electrodes is generated.

Posted: Feb 21st, 2017

Wearable health monitor based on household paper

paper_electronicsPaper electronics - putting flexible electronic sensors and other circuits on regular paper - have the potential to cut the price of a wide range of medical tools, from point-of-care diagnostic tests to portable DNA detectors. In new work, researchers have now shown an integration strategy to rationally design an ultra-low cost health monitoring device, a Paper Watch, using recyclable household materials: non-functionalized papers.

Posted: Feb 16th, 2017

MOF sensor for the detection of hydrogen sulfide at room temperature

MOFMetal-organic frameworks (MOFs) are regarded as a new class of porous materials with significant prospects for addressing current challenges pertinent to energy and environmental sustainability. Due to their unique structure design and tunability, MOFs offer great potential for their effective integration and exploration in various sensing applications. Researchers have demonstrated this by developing an advanced sensor for the detection of hydrogen sulfide at room temperature, using thin films of rare-earth metal based MOF.

Posted: Feb 10th, 2017

Two-dimensional oxides juice up sodium ion batteries

2D-materialResearchers have demonstrated that nanoengineered SnO anodes suppress volume change and prolong sodium ion battery cycle life. Sodium ion batteries are promising alternative to lithium ion batteries, particularly for home based and grid level storage solutions. Tin monoxide has been demonstrated to have excellent physical and chemical properties and has a large theoretical capacity as battery anode, for instance for sodium ion batteries. Unfortunately, though, it also exhibits large volume change during the sodiation and lithiation process, which makes it unsuitable as a high-performing anode material.

Posted: Feb 9th, 2017

Lego like silicon electronics fabricated with hybrid etching masks

lego-like_electronicsResearchers have developed a highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology that shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems. This hybrid mask enables deep sub-millimeter etching while preserving existing devices and structures and is advantageous for many applications, including lego like concept for pre-packaging modules/system integration.

Posted: Feb 6th, 2017

The formation of stable solid electrolyte interphases on lithium metal anode

li_metal_anodeResearchers have successfully demonstrated a facile but effective regulation strategy to render uniform Li deposits by incorporating fluoroethylene carbonate additives. This addresses an issue where safety and uniform deposits of Li ion are critical issues for promoting the practical application of metallic Li as anode for post Li-ion batteries, including rechargeable Li-S, Li-air batteries, and even Li metal batteries which utilize intercalation compounds as cathodes.

Posted: Jan 30th, 2017