Open menu

Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 321 - 328 of 2140 in category (newest first):

 

Microcannons that fire drug-loaded nanobullets

microcannonThe goal of a vast amount of nanomedicine research is the perfect drug carrier: it is injected into the body and transports itself to the correct target, such as a tumor, and delivers the required therapeutic drug dose at this target. This idealized concept was first proposed at the beginning of the 20th century and was nicknamed the 'magic bullet' concept. Taking this 'bullet' concept literally, researchers have developed acoustically triggered microcannons, capable of versatile loading and effective firing of nanobullets, as novel tools toward advancing microscale tissue penetration of therapeutic payloads.

Posted: Jan 5th, 2016

Identifying nanopollution

colorimetric_assayEngineered nanoparticles are being used in a wide range of product areas, including composite materials, coatings, electronics, food, agriculture, cosmetics, healthcare, and biotechnology. As a consequence, human exposure to nanoparticles has become a prominent environmental concern; especially since these potential pollutants are not visible to the human eye or detectable by smell. However, there is no current technology that provides rapid, sensitive and highly portable detection and identification of nanoparticles. Now though, researchers have developed a simple colorimetric sensor array approach capable of detection and unambiguous differentiation of a wide range of nanoparticles in aqueous solutions.

Posted: Jan 4th, 2016

Top 10 nanotechnology spotlights 2015

energy-scavenging_fabricHere are the 10 most popular Nanowerk Nanotechnology Spotlight articles of 2015. This year, the list includes a quick and simple blood test to detect early-stage cancer; self-powered smart suits; nanomaterials for camouflage and stealth applications; nanotechnology energy applications; 3D-printing with graphene; fuzzy and Boolean logic gates based on DNA nanotechnology; a path towards self-powered electronic papers; a look at whether nanomedicine lhas ived up to its promise; smart materials that become 'alive' with living bacteria in supramolecular assemblies; and repair nanobots on damage patrol.

Posted: Jan 1st, 2016

Multiplexed planar array analysis from within a living cell

sensor_arrayResearchers have developed a suspended planar-array chip whose in situ capabilities with a spatial molecular-probe arrangement combine the advantages of both suspended arrays and planar arrays. This opens the way towards the multiplexed detection of intracellular biological parameters using a single device in dramatically reduced volumes, such as inside a living HeLa cell. The chip's volume represents only about 0.35% of the total volume of a typical HeLa cell.

Posted: Dec 29th, 2015

Skin-inspired haptic memory devices

memory_arrayCurrent research on tactile sensors is mostly focused on the improvement of sensitivity and multi-functionality to emulate the function of natural skin. However, natural skin can sense external pressure and help form haptic memory, while current flexible tactile sensors for electronic skin can only perform sensing functions. This functionality gap between state-of-the-art tactile sensing devices and natural skin inspired a team of researchers to develop haptic memory devices that integrate sensor and memory functions.

Posted: Dec 23rd, 2015

Nanotechnology in a bubble

bubble-pen-lithographyBubble-pen lithography (BPL) is a novel optically controlled nanofabrication technique that can be widely applied to pattern colloidal and biological particles on substrates in order to build functional optic, electronic, and magnetic devices. In BPL, an optically controlled microbubble is generated to capture and immobilize colloidal particles on the plasmonic substrates. With this new lithographic technique, the researchers can generate bubbles down to 1 micron in diameter. The smaller bubbles provide an enhanced patterning resolution.

Posted: Dec 22nd, 2015

Light-triggered local anesthesia

liposomeResearchers have demonstrated a system that provides photo-triggered release of local anesthetics in a manner that could be adjusted by varying the irradiance and the duration of irradiation. From the clinical point of view, this is important in that it demonstrates a method by which patients would be able to take control of relatively local pain, being able to deliver local analgesia on demand, for the duration and with the intensity desired.

Posted: Dec 17th, 2015

Plasmonic biofoam beats conventional plasmonic surfaces

aerogelSo far, most of the applications of plasmonic nanostructures rely on solid two-dimensional substrates such as silicon, glass, plastic, or paper. Such substrates offer rather limited accessible surface area, thus severely limiting the volumetric density of the nanostructures. Researchers now have developed a 3D material with a high density of plasmonic nanostructures that are completely accessible. The SERS and photothermal performance of this novel 3D material is superior compared to that of conventional 2D plasmonic surfaces.

Posted: Dec 16th, 2015