Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 369 - 376 of 2761 in category All (newest first):

 

How to power implantable and ingestible electronics

smart-pillA major challenge in the development of implantable and ingestible biomedical electronic devices is the limited lifetime of their power sources. The energy requirements of these devices are highly dependent on their application and the complexity of the required electrical systems. The power unit, which is composed of one or more energy sources - batteries, energy-harvesting, and energy transfer - as well as power management circuits, supplies electrical energy to the whole system.

Feb 16th, 2021

Extending magnetic manipulation of micromachines to non-magnetic materials

microrototMagnetic manipulation of nano- and microscale objects is a remote and non-invasive technology with potentially numerous applications in material sciences and life sciences, such as for instance drug delivery. However, a limitation of this technology is that it can only be applied to certain materials with magnetic response, i.e., ferromagnetic or superparamagnetic materials. A new technique allows to incorporate magnetic nanoparticles onto the nonmagnetic skeleton.

Feb 11th, 2021

High-performance carbon composites made from stretch-bridged graphene sheets

graphene-sheetsIn order to exploit the remarkable mechanical properties of graphene for practical applications, nanoscale graphene sheets need to be assembled into much larger, macroscopic structures. However, there are two pivotal issues that make this task challenging: One is the inherently misaligned and wrinkled structure of graphene platelets; another is the weak interfacial interaction among graphene platelets. Both these problems greatly degrade the properties of macroscopic graphene assemblies such as sheets and fibers.

Feb 10th, 2021

Femtosecond laser converts metallic to semiconducting carbon nanotube

carbon-nanotubeA novel method for fast and accurate local tuning of the optoelectronic properties of single-walled carbon nanotubes makes use of ultrafast-pulsed lasers. The method is based on localized two-photon oxidation of carbon nanotubes when the laser irradiates with energies far below the ablation threshold. At such low energies the nonlinear photochemical interaction of femtosecond laser and carbon atomic lattice prevent thermal effects.

Feb 8th, 2021

Tunable chiral optics suitable for on-chip devices

nanowire-and-nanoparticlesInspired by chiral molecular structures, scientists are developing strategies to build artificial chiral materials by mimicking natural molecular structures using functional materials. Specifically, metal nanomaterials exhibit tailorable optical properties upon excitation of surface plasmons and become one of the most promising components to realize chiral optical metamaterials. Researchers now demonstrate all-solid-phase reconfigurable chiral nanostructures, where the geometry and chiroptical properties can be dynamically tailored and fully controlled on a solid substrate without liquid media.

Feb 1st, 2021

The revolutionary power of bio platforms - or why it took just 48 hours to develop the Covid-19 vaccine

robot-arm-holding-vaccineRather than growing vaccines in bioreactors, a new generation of biotechnology companies designs instructions that the body then can use to produce its own therapy. These novel vaccines exploit the process by which cells build proteins from the information encoded in a single-stranded molecule called messenger RNA (mRNA). They are enabled by the revolutionary nature of new industrialized biotechnology platforms that exploit breakthroughs in biological engineering and artificial intelligence.

Jan 28th, 2021

A brief history of OLEDs

color-explosionOLED technology is based on the phenomenon that certain organic materials emit light when fed by an electric current. OLED technologies makes it possible to manufacture ultra flat, very bright and power-saving OLED televisions, windows that could be used as light source at night, and large-scale organic solar cells. Since the development of the first viable OLED device in 1987, and tens of thousands of patents and research articles later, OLED device technology is moving towards its fourth generation.

Jan 27th, 2021

Characterization of the biomolecular corona at the single nanoparticle level

biomolecular-coronaScientists developed a new method to better understand how nanomedicines interact with patients' biomolecules. When nanoparticles enter human blood, they come into immediate contact with various biomolecules. These biomolecules form a coating layer on the nanoparticle surface - the so-called biomolecular corona - thereby imparting a unique biological identity to the nanoparticle, which could be very different from the pristine nanoparticle surface.

Jan 25th, 2021