Open menu

Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 49 - 56 of 2113 in category (newest first):

 

Manipulating colloids with mobile nanotweezers

helical_nanostructureResearchers have merged two important technologies of nanomanipulation - plasmonic tweezers and magnetically driven microbots - in order to overcome their individual limitations and achieve new functionalities that did not exist before. This technique is applicable to different types of particles in various fluids. The resulting mobile nanotweezers' performance combines the best of both worlds: capturing, maneuvering, and positioning sub micrometer objects of various materials at low illumination intensities, high speeds, and with great control.

Posted: Jan 17th, 2018

Nanofluidics - recent progress

nanofluidicsNanofluidics is the study and application of fluids in and around geometries with nanoscale characteristic dimensions. The field of nanofluidics is not brand-new. Some issues associated with nanoscale fluidics have been occasionally dealt with by researchers in membrane science, colloid science, and chemical engineering for many decades. A recent review article provides a selected overview of the recent progress, rather than a comprehensive review of the entire field.

Posted: Jan 16th, 2018

A a new cooling mechanism for electronic components made of graphene deposited on boron nitride

Optics and mesoscopic physics teams have discovered a new cooling mechanism concerning electronic components made of graphene deposited on boron nitride. The efficiency of this mechanism allowed them to reach electric intensities at the intrinsic limit of the laws of conduction. This new mechanism, which exploits the two-dimensional nature of the materials opens a 'thermal bridge' between the graphene sheet and the substrate. Researchers have demonstrated the effectiveness of this mechanism by imposing in graphene levels of electrical current still unexplored, up to the intrinsic limit of the material and without any degradation of the device.

Posted: Jan 9th, 2018

New insights into highly effective combination of microwave dynamic and thermal therapies against cancer

phototherapyResearchers propose novel flexible Mn-doped zirconium metal-organic frameworks nanocubes for highly effective combination of microwave dynamic and thermal therapy against cancer. This is the first report of determining the microwave thermal conversion efficiency, which can be used to evaluate, compare, and predict the microwave sensitivity of different microwave-sensitive agents. More importantly, such Mn-ZrMOF nanocubes generate abundant reactive oxygen species of hydroxyl radicals under microwave irradiation.

Posted: Jan 8th, 2018

Magnetic nanomotors with integrated theranostic capabilities

microscopyThe role of artificial nanomotors integrated with therapeutic capabilities is a very promising field for clinical applications of medical nanotechnology. Researchers now have demonstrated the intelligent design of nanomotors with a single coating of ferrite, which act as a spacer layer as well as providing therapeutic potential by magnetic hyperthermia. These motors can be remotely maneuvered. The team also tackled the problem of magnetic agglomeration associated with ferromagnetic nanomotors, which limits their biomedical application.

Posted: Jan 5th, 2018

Atomristor - memristor effect in atomically thin nanomaterials

atomristorIn trying to bring brain-like (neuromorphic) computing closer to reality, researchers have been working on the development of memory resistors, or memristors, which are resistors in a circuit that 'remember' their state even if you lose power. Now, scientists have discovered non-volatile memory effect in atomically thin 2D materials such as MoS2. This effect is similar to memristors or RRAM in metal oxide materials. These devices can be collectively labeled atomristor, in essence, memristor effect in atomically thin nanomaterials or atomic sheets.

Posted: Jan 2nd, 2018

Confined topological superconductors host novel chiral states

topological_superconductorTopological superconductivity is an interesting state of matter, partly because it is associated with quasiparticle excitations, which are Majorana fermions, i.e. particles that are their own antiparticles, obeying non-Abelian statistics and therefore being of prime interest for topological quantum computing. A well-known example are chiral superconductors with pxipy-wave pairing of electrons into a condensate of Cooper pairs, the carriers of superconductivity. Researchers suggest to consider mesoscopic samples, confined to the energetically favorable domain size, as a suitable platform to verify and potentially control the chiral domains.

Posted: Dec 27th, 2017

Life-size, biomimetic blood-brain barrier model makes animal models redundant

BBB_modelCrossing the blood-brain barrier (BBB) is the object of intensive research in nanotechnology and biomedicine for developing new therapies against brain cancer and for the treatment of neurodegenerative diseases. For this reason, it is extremely important to develop realistic models of the BBB, which mimic as most accurately as possible the in vivo environment. The development of high-resolution 3D-printing technologies has now enabled researchers to develop a realistic 3D bio-hybrid microfluidic model of BBB inspired by the in vivo neurovasculature.

Posted: Dec 21st, 2017