Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 57 - 64 of 2226 in category All (newest first):

 

Using a virus to make a better type of memory

virusIn a groundbreaking study, researchers have successfully developed a method that could lead to unprecedented advances in computer speed and efficiency. Through this study, researchers successfully developed a method to make a version of biological patterning for nonvolatile memory technology using the M13 bacteriophage - a virus. This possibility leads the way to the nanosecond storage and transfer delays needed to progress modern computing.

Nov 27th, 2018

Whispers about graphene's electrical properties

whispering-galleryScientists report the experimental results of studying the response characteristics in a millimeter wave band whispering gallery mode sapphire resonator to single-layer graphene at different distances of graphene from the resonator. They found that the evanescent field of the resonance system is extremely sensitive to the environment, surrounding materials and disk coatings. A series of experiments showed that such whispering gallery mode resonance can be used to detect the conductivity and thickness of the materials deposited on top and/or can even be used for advanced biosensing.

Nov 21st, 2018

Manufacturing open-mesoporous carbon nanofibers for flexible and wearable power sources

metal-air-batteryRecently, researchers have engineered a next-generation battery technology - known as metal-air batteries - which can be easily fabricated into flexible and wristband-like cells. Although metal-air batteries powered devices still are not ready yet for commercial applications, the current studies have established solid evidence that these devices have provided enormous opportunities to develop the next generation of flexible, wearable and bio-adaptable power sources. Researchers now report a solution to overcoming the current limitation on sluggish reaction kinetics of air cathodes in Mg-air batteries.

Nov 20th, 2018

Nanotribological printing - a novel 3D nanotechnology fabrication technique

nanostructureA novel nanoscale additive manufacturing technique termed Nanotribological Printing creates structures through tribomechanical and tribochemical surface interactions at the contact between a substrate and an atomic force microscope probe, where material pattern formation is driven by normal and shear contact stresses. This technique advances the field of nanomanufacturing by providing a versatile and easily accessible method for creating complex (multi-material) nanostructures, with high precision and uniquely superior mechanical properties.

Nov 13th, 2018

Beta-lead oxide quantum dots

2D-materialIn recent years, black-phosphorus-analogue (BPA) two-dimensional materials have been demonstrated to exhibit promising optoelectronic performances and distinguished ambient stabilities, holding great promise in practical applications. In new work, researchers demonstrated that ultra-small 2D beta-lead oxide quantum dots showed fast carrier dynamics and significantly high photocurrent density and excellent ambient stability. These findings hold great potential for high-performance BPA-based optoelectronic devices.

Nov 6th, 2018

Investigating single-atom catalysis for nitrogen reduction reaction

catalysisThe ability to produce ammonia efficiently from air and water at room temperature and ambient pressure is of great interest in agriculture where it is used in fertilizers. In particular, the electrochemical reduction of nitrogen, in which the conversion of nitrogen to ammonia takes place under mild conditions, is highly relevant for the chemical industry that needs to cope with increasing demands for ammonia and at the same time is under pressure to reduce its ecological footprint. A new study describes novel single-atom catalysts as fascinating electrocatalysts for the application in nirtogen reduction.

Nov 5th, 2018

High-loading graphene composites meet electronic industry's metrics for thermal conductivity enhancement

graphene_fillersResearchers investigated the thermal conductivity and thermal diffusivity of epoxy composites with high loading fractions of graphene and h-BN fillers. They found that the graphene fillers outperformed boron nitride fillers in terms of thermal conductivity enhancement. The surprising finding is that, in the high loading composites with quasi-2D fillers, the apparent cross-plane thermal conductivity of the fillers can be the limiting factor for heat conduction. These results are important for developing the next generation of the thermal interface materials.

Oct 30th, 2018

Testing nanomedicine in space

spaceResearchers investigated the potentially protective role of nanoceria against oxidative stress associated with microgravity and cosmic radiations in space. Their findings support the application of antioxidant nanomaterials to skeletal muscle tissue culture for protection from the noxious effects of microgravity and cosmic radiations, which result in muscle mass and force loss and limit human operations and permanence in space. On Earth, these deteriorations are usually associated with aging or pathologies and are exhibited over longer time intervals compared to those occurring in space.

Oct 29th, 2018