Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 761 - 768 of 2762 in category All (newest first):

 

Conductance of an anti-aromatic molecule measured for the first time

transmission_channelsMolecular electronics aims to use small organic molecules as the active component in an electrical circuit in order to tailor functionality and achieve new levels of miniaturization with increased functionality via chemical design. Anti-aromatic molecules had been predicted decades ago to have excellent conducting properties. Now researchers have realized a molecular circuit involving an anti-aromatic molecule for the first time.

Aug 16th, 2017

Nanofluidic energy conversion inspired by biology

nanoporeSo far, bio-inspired energy conversion in solid-state nanofluidic devices has experienced three generations of evolution with the uptake of separate inspirations from biological ion channels, electric eels, and nacre. Here is an overview of the structural and functional evolution in synthetic one-dimensional and two-dimensional nanofluidic systems under the guidance of three different types of biological inspiration: the asymmetric ion-transport behaviors of biological ion channels, the strong bioelectric function of electric eels, and the layered microstructure of nacre.

Aug 11th, 2017

The intriguing properties and nanotechnology applications of graphene and graphene analogs

grapheneAlthough graphene properties and applications have already been well-discussed in the literature, it also is important to understand how 2D chemistry of graphene and graphene analogs is related to various applications. Graphene functionalization modifies the unique 2D features of graphene. In this way, the electronic and physical properties of graphene can be controlled toward the given purpose such as highly effective novel electronic device applications. Already, graphene functionalization such as adsorption, intercalation, and doping toward device applications has attracted great attention.

Aug 10th, 2017

Harvesting water energy with a wearable, all-fabric triboelectric generator

surfaceWearable energy harvesters are greatly attractive and receive intensive research efforts in recent years, aiming at powering various emerging flexible and wearable electronics to meet the requirements of smart fabrics, motion tracking and health monitoring. Researchers now have developed a coating based on cellulose-derived hydrophobic nanoparticles and demonstrated its application as a wearable water triboelectric generator that harvests energy from water flow. This innovative fabric-based TEG has self-cleaning and antifouling properties.

Aug 7th, 2017

Nanomanufacturing approach to rapidly optimize and fabricate quasi-random photonic nanostructures

nanolithographyQuasi-periodic and random patterns in nature can exhibit extraordinary functions, such as iridescent color in bird wings, strong adhesion in gecko feet, and water repellency from lotus leaves. However, nature-inspired 3D nanostructures can be prohibitively expensive to make using modern nanoscale manufacturing processes. In new work, researchers a design approach integrated with scalable nanomanufacturing that can rapidly optimize and fabricate quasi-random photonic nanostructures.

Aug 1st, 2017

Graphene-based tattoo-like skin biosensors

e-tattooResearchers have developed a stretchable and transparent graphene-based electronic tattoo (GET) sensor that is only hundreds of nanometers thick but demonstrates high electrical and mechanical performance. They show that a GET can be fabricated through a simple wet-transfer/dry-patterning process directly on tattoo paper, allowing it to be transferred on human skin exactly like a temporary tattoo, except this sensor is transparent. Due to its ultra-thinness, a GET can fully conform to the microscopic morphology of human skin via just van der Waals interactions and can follow arbitrary skin deformation without mechanical failure or delamination for an extended period of time.

Jul 31st, 2017

Nanotechnology for neural interfaces

computer-brain-interfacesNeural interfaces establish direct communication between the central nervous system (CNS) and a sovereign, man-made digital system. This technology is perhaps the most important advance in the study and treatment of the brain is the development of the neural interface. Nanotechnology fabrication methods can overcome the limitations of existing interface devices by producing electrodes with an extremely high surface to volume ratio, i.e., more probe units within the same volume, resulting in unprecedented specificity.

Jul 26th, 2017

A new type of ultra-thin plasmonic chiral metamaterial

chiral_metamaterialChiral metamaterials with strong chiroptical properties are an interesting new platform for optical signal modulation. Although plasmonic super chiral fields have been successfully applied to detect the chiral structures of proteins, it has remained challenging to detect the structural handedness of drug molecules due to their small size and thinner film adsorbed on the surface of metamaterials. Researchers now have reported a new type of plasmonic chiral metamaterial by stacking two layers of identical achiral gold nanohole arrays into moire patterns.

Jul 25th, 2017