

Motion | Positioning

PRODUCT OVERVIEW

WWW.PI.WS

The PI Group

No other company in the world offers a broader and deeper portfolio of precision motion technologies than the PI Group. Continuous growth through the development of novel products and technologies is one of the main characteristics of the PI Group.

Novel drive concepts, products and system solutions have led to a continuous growth in market shares and a healthy company development in the past years. With more than 800 highly qualified employees all over the world, research and manufacturing centers on three continents and subsidiaries in 13 countries, the PI Group is in a position to fulfill almost any requirement with regard to innovative precision motion technology.

Air Bearing Stages

Linear, XY, Rotary, Miniature to High Load

Motorized Linear Stages

- Travel to 750mm, Load to 50kg
- Velocity to 2m/s
- Acceleration to 2G's
- Straightness/Flatness to 0.25µm

Spindles / Machining

Zero to 80,000rpm

High Radial Stiffness

High Resolution Encoders

Vacuum Feedthrough Option

- Dynamic Yaw Control & Error Compensation
- Velocity to 1m/s, Acceleration to 1G

Motorized Rotary Stages

- Diameter to 300mm
- Load to 500kg
- Optional Slipring Assembly
- Clear Apertures Available

Linear & Rotary Bearings

- Load to 750kg
- Runout < 0.1µm</p>
- Wobble to 0.5µrad
- Straightness/Flatness < 0.5µm/25mm</p>

Spherical Air Bearings

- For Planarization and Assembly
- For Satellite Attitude Control Testing
- Load to 635kg

Piezo Scanners for Nano-Precision Positioning

In One to Six Axes

Precision Positioning Stages for up to 6 Axes

- Parallel kinematics with capacitive sensors
- Optimum linearity
- Travel ranges to 800 µm

Single-Axis Piezo Scanning Stages

- Excellent precision
- Friction- and backlash-free flexure guidings
- High dynamics, travel ranges to >1 mm

PicoCube[®] XYZ Piezo Scanners for AFM

- Picometer resolution
- Nonmagnetic and
 - UHV versions available

Cost-Efficient Multi-Axis Systems

- Modular design for up to three axes
- SGS position sensors

Fast Tip/Tilt Mirrors

- Two orthogonal, parallel-kinematic tip/tilt axes with common pivot point
- Frequencies to >1 kHz

Highly reliable PICMA® piezo actuators, flexure guidings and capacitive sensors are the basis of piezo scanning stages featuring highest travel accuracy and linearity.

MOTION | POSITIONING

Sample and Objective Scanners

Fast and Precise Positioning in Microscopy

PIFOC[®] Objective Scanners with Millisecond Settling Time

- Scans and positions objectives with sub-nm resolution
- Travel ranges to 2 mm

Z Sample Positioning for Fast Focus Control and Imaging

- Stable positioning
- Fast response times

Precision XY Stages

- For Nikon, Zeiss, Leica and Olympus microscopes
- Fast XY scans, stable positioning

Positioning Revolving Nosepieces of Microscopes

 Minimum objective offset and excellent focus stability

High-Precision Multi-Axis Sample Positioning with Plnano®

- Low height for installation in microscope
- Recessed sample holders

The systems for microscopy include controller and software. Configuration and parameter setting is done via software. Supports third-party software packages, such as MetaMorph, μ Manager, MATLAB or ScanImage. State-ofthe-art interfaces: USB, TCP/IP, PIO, serial real-time interfaces.

Miniature Linear Stages

Piezo, Servo, Stepper Motors

High-Resolution Precision Stages

- With piezomotor and direct position measurement
- 0.5 nm resolution
- Nonmagnetic drive

Highly Dynamic PILine® Stages

- To 250 mm/s
- With piezomotor and direct position measurement
- Nonmagnetic drive

Miniature Stages, Only 24 mm Wide

- 5 N feed force
- With piezomotor and direct position measurement
- Vacuum versions to UHV available

Open-Loop Miniature Stages

- Only 22 mm wide
- Vacuum versions to UHV available
- With piezomotor

Piezomotors are direct drives with different force and velocity development. They transfer the characteristics of piezoactuators to larger travel ranges, e.g for nanometer-precision positioning systems.

Precision Micropositioning Stages with Electric Motors

- Compact XY und XYZ configurations
- With DC or stepper motors

Precision Linear Stages

Travel to 1000 mm

Dynamic with Direct Drive

- Linear motor
- High travel accuracy
- High-resolution position measurement

- For loads to 1000 N
- Variable travel ranges
- Large number of motor variants

Z Stages

- Different load classes
- Integrated limit switches

XY Stages

- Scanning systems for inspection and microscopy tasks
- Large number of motor variants

Cost-Efficient Linear Stages

 Large number of motor variants and different travel ranges

Linear Positioning Stages with Piezomotors

- Precise with direct position measurement
- Self-locking at rest
- Low height

Rotation Stages

From Miniature Size to Ultraprecision

Miniature Rotation Stages

- 14 to 32 mm Ø
- Directly driven with piezomotor
- Self-locking at rest
- Vacuum versions available

- >720°/s
- With integrated position sensor
- Directly driven with piezomotor
- Self-locking at rest

Low-Profile Rotation Stages

- Fast step-and-settle on target
- Directly driven with piezomotor
- Self-locking at rest

Compact Rotation Stages with Electric Motors

- Backlash-compensated drive
- With DC or stepper motors

- Ultra-Precise with Air Bearings
- Wobble-free motion without friction effects
- Stable constant velocity also at low velocities

Stable H With d

Stable High-Load Rotation Stages

- With clear aperture
- Large number of motor variants

Backlash-Compensated Drive

- With clear aperture
- Large number of motor variants
- Different sizes

Goniometers

- Smooth operation
- 2-axis installation with common pivot point

MOTION | POSITIONING

Parallel Kinematics, Hexapods

6 DOF, Nanometer Resolution

Miniature Hexapod

- Repeatability to 0.1 µm
- Versions for fiber positioning
- Versions as high-dynamics motion Hexapods

- Repeatability to 0.1 µm
- Vacuum versions available
- Simpler versions available

Alignment PiezoWalk[®] piezo stepping drives

Hexapods for Nanometer-Precision

UHV-compatible and nonmagnetic

- Excellent precision
- Repeatability to 1 µm

- **Scalable Design for Flexible Solutions**
 - Fast adaptation of travel ranges and angle ranges through modular construction
 - Low total height

- Vacuum Versions to UHV
- With stepper or piezomotors

- **Precision Micro Robots**
- With DC, stepper or piezomotors
- Large travel ranges in X and Y

Parallel-Kinematic Six-Axis Design

- Compact
- Large travel ranges
- Freely definable pivot point
- Systems incl. digital controller and comprehensive software package
- Position commands in Cartesian coordinates

- Vector algorithms
- Optional SPS/CNC interface, optical inputs, large selection of accessories, such as manual control
- Host software, simulation programs, Windows and Linux DLLs, macro programming

9

WWW.PI.WS

Precision Actuators, Automation Actuators

Stepper, Servo, Piezo, Voice Coil

Compact Precision Actuators

- High-resolution drives
- Backlash-free design

High-Load Actuators

Axial force to 400 N

Vacuum versions available

PiezoMike for Drift-Free Long-Term Positioning

- Stable alignment of optomechanical components
- Vacuum versions to UHV available

PIMag[®] Magnetic Direct Drive

- High dynamics
- Low wear
- Optional force control

For industrial automation

- With stepper motor
- Nonrotating tip

Compact positioning solutions for limited installation space, for applications such as in testing and inspection systems in industry and research. The nonrotating tip for uniform feed prevents wobble, torque, and wear at the point of contact.

\mathbf{PI}

Piezo Actuators & Motors

High Dynamics, Sub-Millisecond Response Time, Picometer Resolution

Flexure-Guided Multilayer Actuators

- Cost-efficient OEM solutions for integration
- Travel ranges to >1 mm

Preloaded Piezo Stack Actuators

- Variable end pieces
- High stiffnesses
- UHV designs

Encapsulated PICMA[®] Piezo Actuators

For use in a tough environment

DuraAct Piezo Transducers

- For actuator or sensor applications, structural health monitoring
- Bendable, robust and preloaded through lamination

Preloaded piezo actuators are perfectly suited for highly dynamic applications. A lever amplification with friction-free flexure guidings provides larger travel ranges and guides the motion. Piezo amplifiers and controllers are available in different designs.

OEM Piezo Amplifiers and Controllers

- Universal control for static and highly dynamic applications
- Analog und digital interfaces

\mathbf{PI}

Piezo Actuators & Motors

Alternative Drive Concepts: Non-Magnetic Drives and Piezomotors

PIShift Piezo Inertia Drives

- Self-locking at rest
- Forces to 10 N
- Silent and energy-saving

PILine® Ultrasonic Piezomotors

- To 500 mm/s
- Self-locking at rest
- Fast step-and-settle

NEXLINE® High-Load Actuators with Piezomotors

- Feed force to 800 N
- Nanometer resolution
- Optional position measurement

PiezoWalk[®] Piezo Stepping Drives

- Nanometer precision with a high feed force
- Self-locking at rest
- Piezomotors are nonmagnetic and vacuum-compatible
- Easy integration and affixing of load
- Drive electronics and controllers for all integration levels

Piezo Components

Variable Designs, Optionally with Position Measurement, UHV Versions

PICMA® Multilayer Piezo Actuators

- Low piezo voltage to 120 V
- Travel ranges to 38 µm
- High stiffness

Piezoelectric Components

- Ultrasonic transducers in various shapes: Disks, plates, tubes
- High resonant frequencies
- to 10 MHz

OEM Adaptations, Assembling Technology

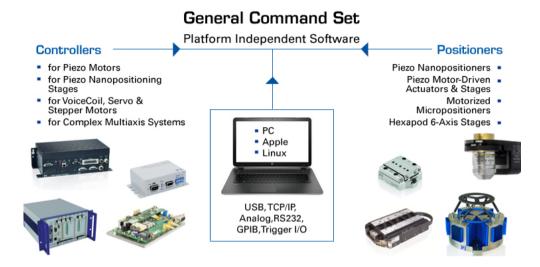
- Piezo transducers for ultrasonic applications
- Complete transducer components

J.

PICMA® Multilayer Bender Actuators

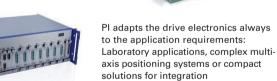
- Bimorph structure for bidirectional displacement to 2 mm
- Low operating voltage to 60 V

PICA High-Load Stack Actuators ■ Travel ranges to 300 µm


- Forces to 78,000 N
- Available with clear aperture

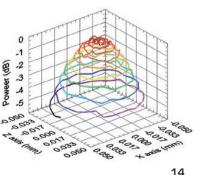
The piezoceramic materials can be adapted individually to perfectly fit the later use of the piezo components. Lead-free piezo ceramics are available for the construction of sensor components. Actuators made of piezo crystals provide a hysteresis-free linear displacement.

Control Electronics & Software


From the OEM Amplifier to the Digital Multi-Axis Controller

Precision positioning in the nanometer range and complex drive technologies require a control technology which is matched to the characteristics of the system.

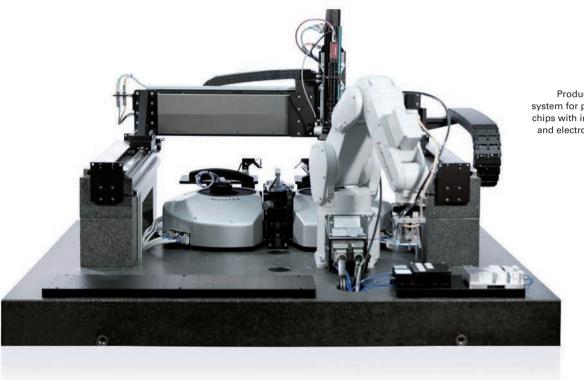
For achieving optimum system properties, PI develops


- Noise-less and highly stable amplifiers,
- Adapted control concepts that improve settling behavior, path accuracy and dynamic behavior,
- Linearization algorithms for electronics, sensors and the mechanical system,
- Digital controllers, that allow system control and change of parameters conveniently via software,
- Digital real-time interfaces and the connection to industrial standard interfaces.

PL adapts the drive electronics always to the application requirements:

All digital controllers made by PI are accompanied by a comprehensive software package. The PI software provides a range of functions, such as data recorder, wave generator, waveform memory for motion profiles, coordinate transformation, reading out of ID chips in the mechanical system or macro operation.

- Universal command set for all products
- Host software for fast start-up and system optimization
- Tools for adaptation of parameters and system optimization
- Scan algorithms for photonics
- System integration of third-party equipment
- Simulation programs for parallel-kinematic systems
- Supported languages and software environments: C, C++, Python, Visual C++, VisualBasic, Delphi, LabVIEW, MATLAB, µManager, EPICS, TANGO, MetaMorph. All programming environments that support the loading of DLLs
- Convenient graphical user interface for displaying all controllers and axes
- Software drivers for D/A boards
 - Integration in text-based programming languages



Fine adjustment for fiber array coupling with optical feedback

MOTION | POSITIONING

Motion Control / System Integration

Production and testing system for packaging microchips with integrated optical and electronic components

Frequently, the complete integration of multiple axes of high-precision positioning systems is required. Some examples are the preparation of experiments in large research facilities, optical metrology, photonics automation as well as test and calibration facilities in industrial applications. PI miCos delivers turn-key solutions from one source, even for complex integrations. All critical mechanical components are manufactured in-house at PI miCos achieving the highest performance characteristics.

The main product focus is set on robot systems for motion in six degrees of freedom, positioning technology for vacuum applications to 10^{-10} hPa, positioning systems with linear motors and air bearing technology, as well as engineering solutions for system integration.

In many fields of application, the requirements for a higher level of system integration increase. PI provides more than just high-quality components. Turn-key solutions that can be integrated seamlessly into existing processes accelerate automation in large research facilities as well as for chip manufacturing processes.

Positioning in vacuum in up to six axes

Piezo Technology: Developed In-House

PI Ceramic, PI's Piezo Manufacturing Division

PI Ceramic in Lederhose, Thuringia, Germany

Instrument for ultrasonic tartar removal, OEM product

PI Ceramic is considered a global leading player in the field of piezo actuators and sensors. The product range includes various piezo ceramic elements manufactured in both multilayer and pressing technology. Piezo ceramic components are manufactured in a large variety of shapes and sizes and come with different motion characteristics.

Prototypes and small production runs of custom-engineered piezo components are available after very short processing times.

PICMA[®] multilayer piezo actuators from PI Ceramic with all-ceramic coating

PI Ceramic provides

- Piezo ceramic components
- Customized and application-specific transducers / ultrasonic transducers
- PICMA[®] monolithic multilayer piezo actuators and benders
- PICA high-load piezo actuators
- PT piezo tube actuators
- Preloaded actuators and piezo composites

Raw materials for ceramics

16

Technological Developments

A profound knowledge of customer requirements and their technological feasibility is the basis for the market leadership in nanopositioning technology. With this background, PI develops positioning solutions with innovative drive technologies for high-tech applications worldwide.

- Parallel-kinematic systems for positioning in six axes (Hexapods)
- In-house manufacturing of piezo actuators
- Capacitive position sensors
- Digital control electronics
- PICMA[®] multilayer piezo actuators
- Comprehensive range of piezo motor technologies: PILine[®] ultrasonic piezomotors, NEXLINE[®] high-power piezo linear drives, NEXACT[®] piezo linear drives, PIShift inertia drives, PiezoMike linear actuators
- Magnetic direct drives

PIMag[®] 6D positions and guides the passive platform with magnetic levitation

Vertical Integration and Production Capacity

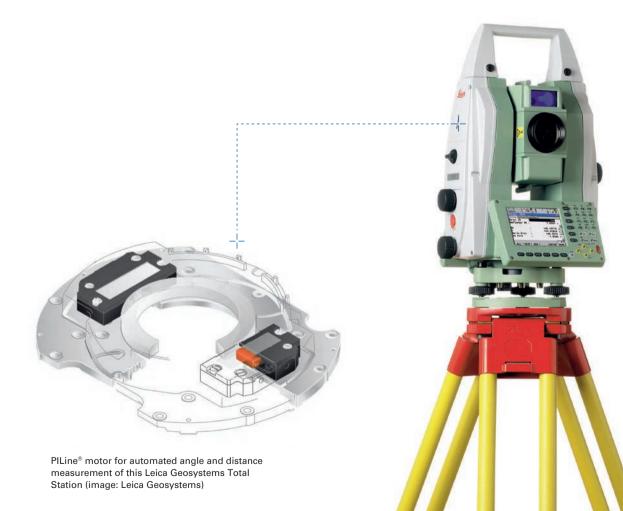
Automated production of PICMA® multilayer piezo actuators in large quantities

Test laboratories for measuring accuracies down to picometers set standards

The product range from a twoton Hexapod to a 10-gram nanopositioner requires that PI can both manufacture and qualify these systems.

Swivel unit, capable of carrying loads to 7 t, for measurements in application situation

- Production and mounting at clean room conditions
- Large quantities
- Stable measuring conditions
- Traceable, calibrated measuring instruments
- Monitoring of piezo actuator technology from material composition to final inspection
- In-house production of position sensors

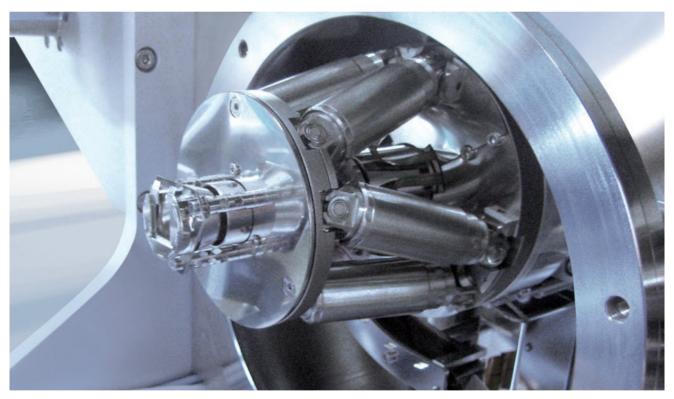


Competences

OEM Support

The technological range available to PI always permits different approaches not limited to one single technology right from the start. The complete control over the design and manufacturing process provides the customer with significant advantages, because PI can modify and customize its products in all areas: Drive and sensor technology, as well as control technology and software. Such solutions often go beyond the stateof-the- art, providing customers the competitive edge that is necessary to be successful in the market.

All system components are developed, produced and tested in house, the certified Integrated Management System (IMS) ensures an efficient technical implementation.


19

The Markets

Basic Research

Why scientists rely on PI: Creativity for Research and Development. Many scientific publications cite PI systems because they are an important prerequisite for successful research and development projects. Custom-made designs for university research are everyday business for PI, also for environmental conditions such as UHV to 10⁻¹⁰ hPa, radiation or strong temperature changes down to the cryogenic range. The spectrum reaches from completely new designs to small modifications of standard products for a better adaptation to the application. Important fields of research are, for example, beamline instrumentation, micro systems and nanotechnology.

Materials research on the synchrotron: The vacuum-compatible Hexapod from PI positions the sample in relation to the incoming X-rays (image: Surface)

PiezoMike for long-term positioning stability

Hybrid drive, consisting of electric motor and piezo actuator, for optimum positioning accuracy and minimum path deviation

MOTION | POSITIONING

The Markets

Astronomy Positioning Solutions, Alignment

Highest precision and dynamics are required in astronomy to follow the motion of stars or to compensate atmospheric interferences. Hexapods from Pl align secondary mirrors of telescopes with a precision of 1 μ m or better; piezo-driven active mirrors increase the optical resolution and align the elements of large segmented mirrors.

ALMA project in the Atacama desert (image: ALMA (ESO/NAOJ/NRAO))

Scientific Instrumentation

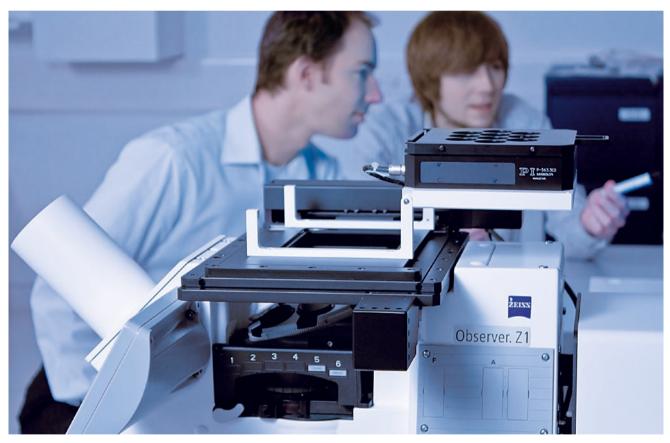
High-Quality Precision Components and System Integration

- High-end equipment for scientific large-scale experiments
- System solutions
- Micro- and nanopositioners

Space Exploration

Highest Reliability, Maintenance-Free Operation

The PI Group is currently present on Mars with micro- and nanopositioning systems: Piezo actuators separate rock samples, motorized drives focus the camera on the Mars Rover Curiosity.



PICMA® actuators in the CheMin Instrument of the Mars Rover Curiosity. 100 billion operating cycles without failures in tests carried out by NASA (image: NASA/JPL)

Automation in Emerging Technologies

Nanotechnology is already part of everyday life. The use of high-precision positioning systems in biotechnology, microscopy or semiconductor technology allows resolution of very fine structures in production and inspection. This allows production of more and more powerful integrated electronic components and investigation of new diagnostic and therapeutic methods in life sciences.

Modern lithographic method, that fully automatically realizes reproducible structures on submicrometer scales. The fine alignment of object or sample is performed by the piezo nanopositioning system (image: Nanoscribe GmbH)

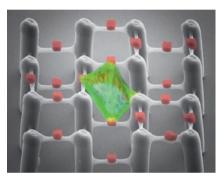
Piezo nanopositioner for up to six axes

Tiny high-precision piezomotor rotary stage

MOTION | POSITIONING

Automation in Emerging Technologies

Medical Technology

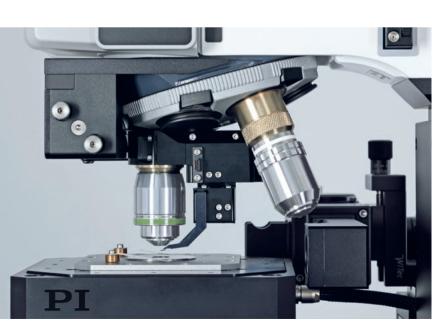

Drives for Portable Terminals, Imaging, Miniature Drives

Piezo ceramics to generate ultrasonic waves, actuators for microdosing and the production of nanoliter drops as well as miniature piezomotors for portable medication devices – all these are tasks for which the PI Group has been offering solutions for many years. For imaging processes, such as OCT, focusing or miniature zoom lenses, small and reliable drive systems are increasingly required.

Biotechnology/ Life-Sciences

Micro- and Nanopositioning Solutions

Biotechnological applications using precise positioning systems from PI are not only limited to typical optical procedures, such as focusing, or to moving and manipulation of samples in microscopy or in genome sequencers. In nanodosing and microfluidics, drive system from PI allow the dosing of smallest volumes in procedures, such as Pipe-Jet, or the design of finest structures by means of nanoimprint or 3D lithography.

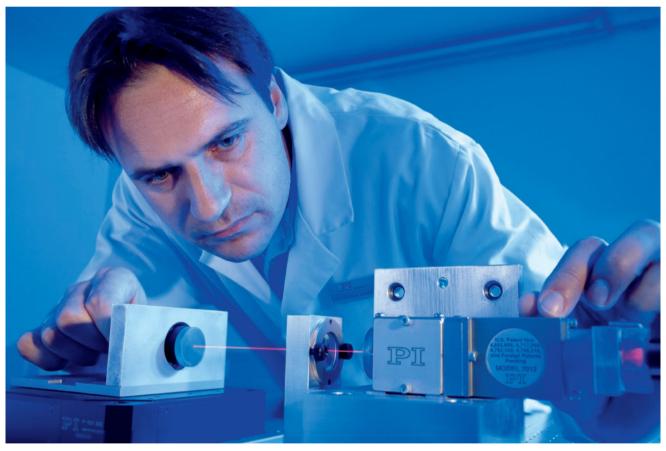


Three-dimensional structure: Cells dock on the "handles" (image: B. Richter and M. Bastmeyer, Zoological Institute, Karlsruhe Institute of Technology (KIT))

Microscopy

Positioning Objective or Sample: AFM, SEM, Optically

Optical methods have been relying on PI positioning systems for years, e.g. for aligning optical systems or samples. Piezo actuators and motors are increasingly replacing conventional drive systems because they are more compact, more precise and faster. Other nonoptical microscopic processes, such as SEM (scanning electron microscope) and AFM (atomic force microscope), use PI systems due to their high accuracy and dynamics.



Fast scans with repeatable positioning (image: WITec GmbH)

Industrial Manufacture and Inspection

The semiconductor industry is a pioneer when it comes to commercializing nanotechnology. Modern computer chips already require structures which are only a few nanometers wide. Inspection systems in semiconductor industry use the performance characteristics of PI systems, e.g. for the inspection of surface structures on semiconductors or flat screens with white-light interferometry. Piezomotor and actuator systems from PI help to precisely align wafers, imaging optics and mask in semiconductor manufacturing.

Calibration of a mulit-axis nano-metrology scanner

Piezomotor with 800 N feed force

Wafer positioner with sub-nanometer precision

Industrial Manufacture and Inspection

Optical Metrology

Fast, Precise and Repeatable Positioning

In all markets, the required tasks are focusing, zoom, object alignment and higher resolution, for applications such as conventional microscopy, digitalizing of documents or camera stabilization for aerial photography. In all of these fields, the PI Group is present with its precise, highly stable and dynamic positioning systems.

Photonics Packaging, Silicon Photonics

Configuring and Testing Microchips

Mechanical Engineering

Fieldbus Interfaces, Multi-Axis Controllers, Clocked Control

Alignment of optical fibers on a microchip in 6 axes

Silicon photonics integrate optical and electric components on silicon substrate. The resulting microchips can send data at terabit-per-second rates via optical waveguides at very low power consumption. For manufacturing and testing components and systems, that are based on silicon photonics, precise positioning is crucial.

Vibrations of a piezo actuator reduce the processing times for high-precision micro-sized holes (image: ICT-IMM)

- Processing, e.g. out-of-round turning with piezo actuators
- Precise positioning, even of high loads in six degrees of freedom
- Setup of testing systems

Drives that Set the World in Motion

Pl is a synonym for top performance in precision motion technologies. We wish to inspire you with our products. We believe that we have exactly what it takes. Pl offers a technological spectrum that is beyond competition worldwide. Piezo actuator technology, voice-coil drives, magnetic levitation technology, nanometrology sensors and digital controllers – we can implement all of these technologies for any high-precision motion task. Piezo ceramics are such an elementary part of our portfolio that we founded an entire company to produce the highest quality piezo materials in the world: Pl Ceramic. This way, we are independent from general purpose components available on the market and can offer all key technologies from one source. This is what makes Pl different and unique. And we need to be unique to satisfy your specific requirements in drive and positioning technology.

However, technology is not our only strength. Even more important are all the people working for and with Pl. Permanent improvement of the workflow, flat hierarchies, direct communication, both internally and with our customers, are a very good basis. Our employees are looking forward to working for you. We wish to delight you with our solutions.

Dr. Karl Spanner, President of Pl

Quintessentially PI: Nanometer resolution for precision focus control in microscopy with PIFOC[®] objective scanner

PICMA® multilayer piezo actuators with all-ceramic coating for optimum reliability and lifetime

SpaceFAB positioning system from PI miCos. Parallel kinematics for positioning in up to six degrees of freedom

PI USA

USA and Canada (East)

PI (Physik Instrumente) L.P. 16 Albert St. Auburn, MA 01501 Phone +1 508 832-3456 Fax +1 508 832-0506 info@pi-usa.us www.pi-usa.us

PI (Physik Instrumente) L.P. 5420 Trabuco Rd., Suite 100 Irvine, CA 92620 Phone +1 949 679-9191 Fax +1 949 679-9292

San Francisco Bay Area Office

 PI (Physik Instrumente) L.P.

 1 Harbor Drive, Suite 108

 Sausalito, CA 94965

 Phone +1 408-351-4086

 Fax +1 949-679-9292

Headquarters

GERMANY

Physik Instrumente (PI) GmbH & Co. KG Auf der Roemerstr. 1 76228 Karlsruhe Phone +49 721 4846-0 Fax +49 721 4846-1019 info@pi.ws www.pi.ws

PI miCos GmbH Eschbach info@pimicos.com www.pi.ws

PI Ceramic GmbH Lederhose info@piceramic.com www.piceramic.com

JAPAN

PI Japan Co., Ltd. Tokyo info@pi-japan.jp www.pi-japan.jp

FRANCE

PI France S.A.S. Montrouge info.france@pi.ws www.pi.ws

ITALY

Physik Instrumente (PI) S. r. l. Bresso info@pionline.it www.pionline.it

KOREA

PI Korea Ltd. Seoul info-kr@pi.ws www.pikorea.co.kr

Pi Japan Co., Ltd. Osaka info@pi-japan.jp www.pi-japan.jp

UK & IRELAND

PI (Physik Instrumente) Ltd. Cranfield, Bedford uk@pi.ws www.physikinstrumente.co.uk

SOUTHEAST ASIA

CHINA

PI (Physik Instrumente) Singapore LLP Singapore info-sg@pi.ws www.pi-singapore.sg For ID / MY / PH / SG / TH / VNM / TW

Physik Instrumente (PI Shanghai) Co., Ltd. Shanghai info@pi-china.cn www.pi-china.cn

Well-Positioned All Over the World

The PI Group is present in all key technology regions world-wide. Its local representations around the globe are more than just sales agencies. Customers benefit from this in many ways:

- Service facilities for diagnosis and repair as well as metrology equipment for tests, system calibration and quality assurance
- R&D departments, which are able to react promptly to the demands of the local markets and ensure a direct dialog with the customers
- Sample and prototype construction in close contact with development departments and customers
- Sales and application engineers experts for the entire product portfolio of the PI Group and your contact for customized developments – from the initial consultation to the delivery
- Market and business development experts who listen to what customers in specific market segments want and enable the PI Group to develop products that fulfill these requirements.

USA (West) / Mexico Pl (Physik Instrumente