Das perfekte Baumaterial f�r Nano-Roboter

(Nanowerk News) Im Dünnschichtlabor des Max-Planck-Institutes für Intelligente Systeme in Stuttgart werden Kristalle in Nanometerdimension hergestellt, die als idealer Baustoff für kleinstformatige Roboter dienen können. Diese Faden-Kristalle sind vollkommen im Gefüge und äusserst belastbar: sie behalten auch unter mechanischer Beanspruchung ihre Form langfristig bei. Ein Team internationaler Wissenschaftler berichtet in Zusammenarbeit mit Stuttgarter Physikern über ihre Forschungsergebnisse.
Wechselt man vom Makro- in den Nanobereich, so verändern sich die physikalischen und chemischen Eigenschaften von Metallen. Dies wussten bereits Forscher und Künstler vor mehreren hundert Jahren.
Zerkleinert man zum Beispiel das Edelmetall Gold in winzige Goldpartikel mit einem Durchmesser von wenigen Nanometern, so wird man die typisch goldene Färbung vergebens suchen: die Goldpartikel zeigen nun eine tiefrote Farbe, die bereits vor Jahrhunderten dazu verwendet wurde, beeindruckende Bilder in Kirchenfenstern zu gestalten. Nicht minder überraschend ist, dass die Blaufärbung solcher Malereien von Silberkolloiden stammen, also von Silber-Nanopartikeln.
Doch nicht nur die Farbe verändert sich beim Übergang in den Nanobereich: auch mechanische Eigenschaften, wie zum Beispiel die Fähigkeit zur Verformung ist von der Grösse des Gegenstandes abhängig.
Wird beispielsweise wenig Druck auf eine metallische Oberfläche ausgeübt, so ist die Verformung nur vorübergehend. Dies verdeutlicht ein einfaches Beispiel aus dem Alltag: die Karosserie des PKW springt bei geringfügigem Druck in die Ausgangslage zurück. Übersteigt die Krafteinwirkung eine bestimmte Grenze, so ist die Beule im geliebten Autoblech dauerhaft: der Physiker spricht von plastischer Verformung.
Wie hoch die Kraft sein muss, dass aus der reversiblen Einbuchtung eine dauerhafte Beule wird, ist von der Grösse der Metallkörpers abhängig: "Grundsätzlich gilt: the smaller, the stronger“, erläutert Dr. Gunther Richter, Leiter des Dünnschichtlabores am MPI-IS in Stuttgart. "Bei Nanostrukturen ist eine vergleichsweise höhere Kraft zur Verformung notwendig, als bei grösseren Strukturen, d.h. um den Übergang von elastischer zu plastischer Verformung zu erreichen.“
Gunther Richter stellt diese Nano-Haare in seinem Dünnschichtlabor am MPI-IS in Stuttgart her: mittels Verdampfungsanlage werden verschiedene Metallgase (z.B. Palladium, Silber, Gold) unter Vakuumbedingungen auf einem Träger abgeladen. Dadurch wachsen haarähnliche Kristalle, die gerade einmal 20 µm lang und nur 100 nm im Durchmesser sind.
"Das MPI-IS ist als einzige Einrichtung weltweit dazu in der Lage", betont Gunther Richter.
Lund
Nano-Haare, die im Dünnschichtlabor am MPI-IS in Stuttgart hergestellt werden: im Vakuum werden verschiedene Metallgase (z.B. Palladium, Silber, Gold) auf einen Träger aufgedampft. Die haarähnlichen Kristalle sind gerade einmal 20 µm lang und nur 100 nm im Durchmesser. (Bild: Dr. Gunther Richter)
Diese im Vakuum gewachsenen Fadenkristalle sind absolut perfekt: sie sind frei von jeglichen Defekten, und ebenmässig in der (Kristall-)Struktur.
Erst über mechanische Beanspruchung, die zu Verformung führt, werden Defekte in der Struktur eingeführt. Diese Belastungsproben untersuchen die Wissenschaftler im Transmissionselektronenmikroskop und berichteten darüber bereits im sehr renommierten Nature Communications ("Reversible cyclic deformation mechanism of gold nanowires by twinning–detwinning transition evidenced from in situ TEM").
Die metallischen Nano-Strukturen werden unter Last im Druck und im Zug untersucht: mechanische Verformungen werden erzeugt, die aber vollständig reversibel sind. Dies liegt an der vollkommenen, Defekt-freien Struktur. Die Stuttgarter Fadenkristalle halten somit Spannungen extrem gut aus, ohne dass die Form des Nano-Objektes langfristig verändert wird.
Anders sieht es aus, wenn solche Faden-Kristalle in der Flüssigphase hergestellt werden: die Struktur ist defekt-behaftet und nicht so gleichmässig wie bei der Vakuum-Variante. Im Transmissionselektronenmikroskop sehen die Forscher den entscheidenden Unterschied: bei zyklischer Belastung verändert sich der Nano-Kristall aufgrund plastischer Verformung ("Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction"). Faden-Kristalle, die in Flüssigkeiten gezogen wurden, reagieren somit instabiler auf mechanische Belastung.
Dies macht die Faden-Kristalle, die am MPI-IS hergestellt werden zum idealen Baustoff für intelligente Systeme im Nano-Format: sie sind äusserst belastbar, verbrauchen wenig Energie und reagieren reversibel auf mechanische Belastungen: sie springen immer wieder in die Ausgangsform zurück.
Die Wissenschaftler haben sich bereits die nächsten Ziele gesteckt: sie möchten untersuchen, ob und wie sich mechanische und auch magnetische Eigenschaften von Nano-Kristallen unter thermischer Belastung verändern.
Source: Max-Planck-Institutes für Intelligente Systeme