Nanotechnology Research Laboratories

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 1876 - 1900 of 1940

 
This official Master from Zaragoza University (Spain) has a duration of 18 months and comprises 75 ECTS credits. The course is suitable for graduates with science, engineering, medicine or related degrees keen to develop careers at the forefront of nanoscience and nanotechnology. The course is multidisciplinary and aims to provide students with fundamental knowledge, practical experience, and skills in the fabrication and characterization of nanostructured materials and devices with applications in key areas of nanochemistry, nanophysics, and nanobiomedicine.
The common thread linking the group's research areas is the use of nanoporous interfaces, in a multiplicity of shapes and textures. The group is interested in methods that allow them to develop and control porous structures, and to deploy these structures on a variety of surfaces and environments; they also try to find applications in which nanoporous structures can be employed to modify the performance of different types of devices.
The three objectives of CNST are: 1) To create a center of research excellence in the field of nano science and technology 2) To establish core facilities and common labs to serve researchers in UST and other institutions in Taiwan and 3) To promote Taiwan's nanotechnology through education, research, training courses, and collaborative research with high tech industries.
Nanotechnology has both applications and implications for the environment. EPA is supporting research in this technology while evaluating its regulatory responsibility to protect the environment and human health. This site highlights EPA's research in nanotechnology and provides useful information on related research at EPA and in other organizations.
The US Food and Drug Administration regulates a wide range of products, including foods, cosmetics, drugs, devices, and veterinary products, some of which may utilize nanotechnology or contain nanomaterials.
Strategic Research Areas are: To achieve dramatic, innovative enhancements in the properties and performance of structures, materials, and devices that have controllable features on the nanometer scale.
A 3-year fulltime program for the Bachelor degree.
A 2-year fulltime program for the Master degree.
Nanotechnology Centre (CNT) as a successor of Institute of Materials Chemistry (IMACH) was established 2/1/2007. Establishment of the CNT reflects the changes in research and development activities of the IMACH which became strongly focused on the different fields of Nanomaterials and Nanotechnology. Establishment of the CNT reflects also accreditation and start of the new study program Nanotechnology at our University.
A PhD program in nanotechnology.
The Valencia Nanophotonics Technology Center (NTC) is a research center whose mission is to exert the leadership in Europe in the micro/nanofabrication of structures on silicon, as a key support for the development of nanotechnology and nanoscience, specially towards their applications in photonics: in the areas of optical fiber networks and systems, biophotonics, defence, security, photonic computation, etc.
The lab is focused on the creative design of energy storage platforms that be integrated into technology and/or replace fossil fuels. Central to everything they do is the development of new materials that are engineered at nanometer length scales, and developed using scalable and cost-effective approaches. This has far-reaching applications spanning aerospace systems, robotics, smart buildings, flexible electronics, and more.
The Vanderbilt Institute of Nanoscale Science and Engineering (VINSE) is a University institute focused on new science and technology based on nanoscale materials.
Nanotube- and Femtophysics Lab.
The research group of Cary Pint focuses on topics ranging across nanomaterials, energy storage, energy harvesting, sustainability, and water purification/desalination.
The Rosenthal group studies semiconducting nanocrystals. They are specifically interested in two applications exploiting the properties of nanocrystals: the use of nanocrystals as the light harvesting element in photovolatic devices and the use of fluorescent nanocrystals as biological probes for membrane proteins involved in neuronal signaling.
Variability-aware software for efficient computing with nanoscale devices. The Variability Expedition envisions a computing world where system components – led by proactive software – routinely monitor, predict and adapt to the variability of manufactured systems. Changing the way software interacts with hardware offers the best hope for perpetuating the fundamental gains in computing performance at lower cost of the past 40 years.
The goal of the European FP7 VascuBone project is to develop a 'tool box' for bone regeneration, which on one hand fulfils basic requirements and on the other hand is freely combinable with what is needed in the respective patient's situation. The tool box will include a variation of biocompatible biomaterials and cell types, FDA approved growth factors, material modification technologies, simulation and analytical tools like molecular imaging based in vivo diagnostics which can be combined for the specific medical need. This tool box will be used to develop translational approaches for regenerative therapies of three different types of bone defects.
Veneto Nanotech was established with the objective to build international excellence in research, to foster the application of nanotechnology, and to support the development of start-ups in the focus sector.
The MacDiarmid Institute is New Zealand's premier research organisation concerned with high quality research and research education in materials science and nanotechnology.
Villanova has strived to develop state-of-the-art nanotechnology research facilities all over campus.
The new program, which was developed by faculty in the VCU Departments of Chemistry and Physics, is designed to cross-train students in the physical sciences of chemistry and physics with particular focus on how the science changes at reduced dimensions. There is a potential for other departments to become more involved as the program develops.
The Advanced Materials Group at Virginia Tech focuses on advanced functional and supramolecular bio(nano)materials: Design, synthesis and engineering of bio-inspired, bio-sourced functional polymers, supramolecular materials, and nanocomposites; stimuli-responsive materials; biomedical materials; combining covalent and non-covalent interactions to create structured smart materials.
The B.S. degree program in Nanoscience (NANO) has recently been approved. Students can declare their major in NANO starting in Spring 2015.
 
 
 
left arrowBack to Nanotechnology Links Directory