Nanotechnology Research Laboratories

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 1926 - 1950 of 1950

 
The lab's research interests are fabrication, characterization, and fundamental understanding of advanced nano/micro photonic devices with outstanding optical properties.
In 2005, the National Cancer Institute (NCI) recognized Washington University School of Medicine's contribution to nanomedicine with a five-year, $16 million grant to establish the Siteman Center of Cancer Nanotechnology Excellence (SCCNE). It is one of eight such centers funded by the NCI in the United States.
The lab's research interests are focused at the intersection organic and plasmonic nanomaterials. They aim at rational integration of organic (polymeric, biological) materials and plasmonic nanostructures to realize multifunctional materials. Organic materials with responsive and self-assembling properties combined with functional plasmonic nanostructures that exhibit unique optical properties forms a powerful materials platform for a wide variety of applications including plasmonic photovoltaics, chemical and biological sensors, adaptive materials, non- or minimally-invasive bioimging and therapy.
Ivan Avrutsky's group designs, fabricates, tests, and simulates optoelectronic devices employing waveguide gratings and nanostructured materials. They study physics of light interaction with such objects. Practical applications are mostly in the areas of optical communication and optical sensors.
This website provides information on various nanoscience and nanotechnology initiatives at Wayne State University.
The Functional Nanomaterials and Electrochemistry group, under the leadership of Prof. Israel Rubinstein, focuses its research in the general area of nanochemistry, namely the preparation, study and applications of novel architectures controlled on the nanometer scale.
The group is interested in developing new molecular and nanoscale approaches to both understanding chemical and physical properties of materials (inorganic, organic and biological) as well as to the production and assembly of new materials and devices exhibiting interesting phenomena and useful applications. Their research emphasizes the role of intermolecular forces in chemistry, as the basis for both molecular recognition and molecular assembly.
The group of Dan Oron is concerned with nonlinear optical properties of plasmonic nanostructures, dynamics of multiply excited multicomponent semiconductor quantum dots, development of far-field sub-diffraction-limited imaging techniques, and nanoparticle-based nonlinear microscopy techniques.
The group is investigating chemical and physical properties of matter at the nanoscale. They are particularly interested in new approaches to the synthesis of nanocrystals: self-assembly of nanoparticles; organic nanostructures; supramolecular chemistry; chemical reactivity in confined spaces; molecular switches; and stimuli-responsive materials.
The Sub Micron Semiconductor Center is a unique facility enabling the design, material growth, fabrication, and characterization of mesoscopic systems, with dimensions ranging from 10 nm to a few micrometers.
The Western Institute of Nanoelectronics (WIN), a National Institute of Excellence, has been organized to build on the best interdisciplinary talents in the field of nanoelectronics in the world. WIN?s mission is to explore and develop advanced research devices, circuits and nanosystems with performance beyond conventional scaled CMOS.
The acquisition of the Large Chamber Scanning Electron Microscope (LC-SEM) has positioned WKU as the only university in North America with an instrument of this type. As envisioned, the NOVA Center will be a national focal point for nondestructive measurements and is crosscutting in the five priority research areas of the Commonwealth's New Economy Strategy. In particular, Materials and Advanced Manufacturing will be significantly impacted as a result of the Centers founding.
A project funded by the European Commission to encourage young women to consider studies and pursue careers in this new scientific field (providing role models and mentoring programs), attract youth to Nano, network and empower women scientists working in Nano-Science at European level, stimulate female scientists to participate in EU programmes, mobilize stakeholders in favour of gender equality in scientific research and stimulate the science-society dialog.
Research programs of the AFM Lab include mechanical properties of carbon nanotubes and photoresponse of light-activated molecules.
In BEI's seven multidisciplinary centers, scientists, engineers, and clinicians address important research challenges in several major areas of medical technology and healthcare, including bioprocessing, imaging, nanotechnology, remote diagnostics and treatment, sensing, and water quality.
Current research and education carried out in this laboratory focus upon the experimental and conceptual study of nanoscaled materials fabricated by Non-lithography process assisted with anodized aluminum oxide (AAO) template.
This research group studies condensed matter systems, often in the solid state, using first principles or ab initio methods. Topics include properties of nanostructures, especially nanowires and nanotubes.
The Mark A. Reed Group at Yale University focuses on research in semiconductor nanowires and devices, quantum electron devices, transport phenomena in semiconductor heterojunction and nanostructured systems, reduced dimensionality effects, resonant tunneling transistors and circuits, novel heterojunction devices, molecular electronics, MEMS, bioMEMS, and nanotechnology.
Quantronics Laboratory (Qlab) explores the world of mesoscopic electronics. Using superconducting electrical circuits and microwave measurement techniques, the group coaxes typically classical degrees of freedom like currents and voltages into quantum mechanical behavior. The present focus is on applications to Quantum Computation.
Research in the group aims at the development of nature0inspired bio- and nanosensors for the solution of several challenging problems of today's world.
The research of the lab interfaces with condensed matter physics, materials science, and biophysics. Current research projects involve the development of synthesis and crystal growth of novel carbon materials such as carbon nanotubes and fullerenes.
The group focuses on developing the next-generation nanoparticle system in which various components are integrated to show multitasking and enhanced chemical and physical properties.
The lab deals with micro/nano master fabrication and micro/nano molding technology.
Zhejing California International NanoSystems Institute (ZCNI) is a first of its kind research and technology innovation platform in China established on June, 2005 at Hangzhou, Zhejiang, which is the joint effort among Zhejiang Provincial Government, Zhejiang University (ZJU), California NanoSystems Institute (CNSI), and whose mission is to accelerate the application of nanotechnology in biology, medicine, material, information technology, chemistry etc.
The focus of the Center of Functional Materials and Nanotechnology are the modification and analysis of surfaces and the development of applications in the following areas of chemistry and biology: Functional- and biomaterials; Nanotechnology; Surface analysis; Filtration technology in industrial chemistry.
 
 
 
left arrowBack to Nanotechnology Links Directory