Nanotechnology Research Laboratories

 

Showing results 171 - 180 of 593 of research organizations in USA:

 
The research in the Laboratory for Multiscale Regenerative Technologies is focused on the applications of micro- and nanotechnology to tissue repair and regeneration. The long-term goals are to improve cellular therapies for liver disease, develop enabling tools to systematically study the fate of stem cells, and design multifunctional nanoparticles for cancer applications.
An experimental group in the Department of Materials Science and Engineering that is studying spin dynamics and spin-electronics in nanoscale magnetic materials and devices. The Beach group's work aims at exploring the fundamental underpinnings of new concepts in spin-based data storage, computation, and communications.
The Sengupta laboratory is focused on developing engineering solutions for complex disease. Our research lies at the interfaces of fundamental biology, medical applications and nano-scale engineering, where basic understanding of biology inspires the development of novel technology or medical applications.
The Marble Center for Cancer Nanomedicine brings together leading faculty from the Koch Institute for Integrative Cancer Research to focus on grand challenges in cancer detection, treatment, and monitoring that could benefit from the emerging biology and physics of the nanoscale.
The Mechatronics Research Laboratory (MRL) is devoted to the control, system dynamics and design challenges associated with the fields of nanotechnology, biotechnology and robotics. Current research includes control techniques of atomic force microscopes (AFM) to improve imaging, using the AFM to sequence DNA, filtering of nano-scale biomolecules in fluidic suspension, and design of energy-efficient robotics.
The Nanoscale Sensing group applies microfabrication technologies towards the development of novel methods for probing biological systems. Current projects focus on using electrical and mechanical detection schemes for analyzing biomolecules and single cells.
The Micro and Nano Engineering area at MIT's Department of Mechanical Engineering seeks to create new engineering knowledge and products on the micro and nano-scale.
The Microfluidics and Nanofluidics Research Group at MIT is focused on understanding and controlling transport phenomena in fluidic systems at the micro and nano length scales.
The NECST Consortium's technology focus is to improve the performance of advanced aerospace materials/structures through strategic use of carbon nanotubes (CNTs) combined with traditional advanced composites to form hybrid architectures. Two primary 3D nano-engineered architectures are being explored and developed, both polymer-matrix based. The fabrication strategy involves novel synthesis of high-quality, long (several millimeters), aligned CNTs placed strategically in existing advanced composite systems. Early results have demonstrated that high-quality CNT/traditional hybrid composite laminates can be architected and fabricated at rates and scales that can be used in full-scale aerospace structures; this made the formation of the NECST industry Consortium imperative.
The Nanoengineering Group is part of the Mechanical Engineering Department at MIT. Their research is focused on nanoscale energy transport, conversion, and storage.