Nanotechnology Research Laboratories


Showing results 31 - 45 of 64 for research and community organizations in Japan:

Maintains a nanoelectronics research lab.
The group combines experiments, theory, and modeling to explore the dynamics and properties of flows involving nano- or micro-structures (i.e., DNA, surfactants, lipid vesicles, or bacteria, cells), in which intermolecular/particle forces give rise to time- and length-scale distributions that are important in many biophysical and technological processes.
This research unit studies the structural, magnetic, electronic, chemical properties and applications of size selected monometallic, bimetallic and core?shell nanoclusters/nanoparticles prepared by magnetron sputter gas aggregation source.
Research in Prof. Xu's group is directed toward the integration of 'Nano', 'Bio', and 'Chem' at femtoliter, attoliter, and single molecule scales through nanofluidics. They continue to involve the study and development of novel nanofluidic methods and devices for single cell omics, single molecule chemistry, biomaterials, nanomedicine, energy, and process engineering.
Ultra high spatial-resolution and sensitivity for sensing biomolecules and DNA can be achieved by the use of nanotechnology such as scanning probe techniques and non-linear photonics using ultra short pulsed lasers. The Group is evolving these techniques to create new biological applications, particularly, real-time measurement of the chemical reactions occurring in living cells and tissue.
The Institute for NanoScience Design prepares various kinds of education and training programs such as trans-disciplinary graduate-school minor program, evening course refresher program, short-term international research training program, etc. It offers a series of lectures, some of them in the form of distance education broadcasted live to satellite classrooms located many places in Japan, and tentatively even overseas in English.
LaSIE is doing some of the world's frontier research in photonics, nanotechnology (nanophotonics, nanofabrication), and bio-related areas.
The Nanoscience and Nanotechnology Center proactively promotes industrial applications of nanotechnology while carrying out bottom-up and top-down technologies.
The Protonic NanoMachine Group aims at the ultimate understanding of the mechanisms of self-assembly and its regulation, conformational switching, force generation, and energy transduction by biological macromolecular complexes.
Research in the group focuses mainly on molecular signaling systems that transmit and convert cell and gene information, in which dynamic organization into the bio-system is deeply related to the function. Techniques including imaging technique of single molecules in 3D and real time aer being developed to visualize and manipulate single molecules in bio-systems and the behavior, structural changes and physical and chemical properties of individual bio-molecules acting in bio-molecular systems will be monitored in real time and space.
The protonic NanoMachine Project focuses on the roles of protons as energy and signal carriers in the complex network formed by a vast number of macromolecular nanomachines that support various activities of life.
The group's research focuses on the development of functional oxides based thin film devices utilizing photonic, electronic, and magnetic properties; the fabrication of conducting oxide based superstructure and their potential investigation as thermoelectric materials; the development of special epitaxial growth method; and the development of novel oxide spintronics devices.
The group explores advanced molecular photonics based on semiconducting quantum dots, photofunctional organic molecules, and laser manipulation techniques.
The group's research focuses on plasmonics for photochemistry and photophysics, including following sub-topics: Plasmonic Waveguiding; Single Molecule Studies; Plasmon Associated Energy Harvesting; Drug Delivery System based on Plasmonics.
Researchers in the lab are involved in a variety of research aimed at integrating and combining top-down and bottom-up phenomena.
left arrowBack to Nanotechnology Links Directory