Nanotechnology Research Laboratories

 

Showing results 61 - 70 of 155 of research organizations in Germany:

 
The interdisciplinary degree courses in nanotechnology at Leibniz Universit�t Hannover provide extensive training in the field of nanotechnology. The Faculties of Electrical Engineering and Computer Science, Mechanical Engineering, Mathematics and Physics, and Natural Sciences have combined forces to offer this joint programme.
The group explores nanoscale condensed matter systems for novel optoelectronic phenomena and applications in nanophotonics and quantum science and technology.
various research groups dealing with nanoscale physics.
MAFIN aimed at developing a new magnetic recording media at prove-of-concept level for ultrahigh density magnetic storage applications, by using low-cost, environmentally friendly processes and both advanced and new nanotechnologies. The MAFIN project successfully ended in May 2009. Reserach on magnetic storage is continued within the TERAMAGSTOR project.
Research on dynamics and self organization covers nanobio complexity.
The mission of the Department Structure and Nano-/Micromechanics is: to develop experimental methods to perform quantitative nano-/micromechanical and tribological tests for complex and miniaturized materials;to unravel the underlying deformation mechanisms by advanced microstructure characterization techniques from the micrometer level down to atomic dimensions; to establish material laws for local and global mechanical behavior; and to generate nanostructured materials and high temperature intermetallic materials with superior mechanical properties.
A group of physicists, biologists, chemists and engineers conceiving inventing and utilizing optical microscopes with resolution at the nanometer scale to advance life sciences.
Dealing with chemical and physical aspects of nanoscience and nanotechnology.
Research efforts in the Department are centered on nanometer-scale science and technology, primarily focussing on solid state phenomena that are determined by small dimensions and interfaces.
The creation of novel materials with targeted functionalities is the ultimate goal in several scientific and technological fields, ranging from chemistry and pharmaco-chemistry to molecular electronics and renewable energies. Molecular modelling and simulation are vital components of the scientific investigation of materials, as well as essential tools to engineer novel materials with improved performances. Future advances in this field should systematically address the challenge of bridging the gap between simulations and experiments. To this end, a unifying theme of this research is the development of a modelling framework for the investigation of materials. Through the creative synthesis of traditional all-atom simulations, electronic structure methods, and rare events techniques, we apply a multiscale approach to the study of materials and nanostructures.