Nanotechnology Research in California


Showing results 16 - 30 of 100 for research and community organizations in California:

Motivated by the goal of encoding arbitrary mechanical function into nucleic acid sequences, the lab is working to develop computational algorithms for the analysis and design of equilibrium and kinetic properties of nucleic acid systems. In the laboratory, we are focused on constructing molecular sensors, transducers and motors for therapeutic, bioimaging, and transport applications.
The research activities of Michael Roukes' group at Caltech are currently focused upon developing and using of nanodevices in the exploration of single-quantum and single-molecule phenomena.
One of the research areas at the Vahala group at Caltech is Planar Nanocrystal Quantum Dot Lasers.
The University of California, Los Angeles and University of California, Santa Barbara have joined to build the California NanoSystems Institute (CNSI), which will facilitate a multidisciplinary approach to develop the information, biomedical, and manufacturing technologies that will dominate science and the economy in the 21st century
The lab's goal is to understand the fundamental design principles of cellular control systems and to apply these principles to engineer cells or cell-like devices with novel, 'smart' therapeutic functions.
The CCNE's goal is goal is to develop and validate nanotechnology so that one will eventually be able to predict which patients will likely respond to a specific anti-cancer therapy and to monitor their response to therapy.
The Center for Cell Control is working to first utilize systems control, with therapeutic intent, to determine the parameters for guiding the cell to a directed phenotype/genotype which will then be followed by in depth study, using nanoscale modalities, of the path by which this desired state is achieved. This approach will enable engineering systems that can be applied towards the regulation of a spectrum of cellular functions, such as cancer eradication, controlling viral infection onset, and stem cell differentiation.
The goal of COINS is to develop and integrate cutting-edge nanotechnologies into a versatile platform with various ultra-sensitive, ultra-selective, self-powering, mobile, wirelessly communicating detection applications.
FENA aims to create and investigate new nano-engineered functional materials and devices, and novel structural and computational architectures for new information processing systems beyond the limits of conventional CMOS technology.
The FlexTech Alliance is the only organization headquartered in North America exclusively devoted to fostering the growth, profitability and success of the electronic display and flexible, printed electronics supply chain. Leveraging its rich history in promoting the display industry as the U.S. Display Consortium, the FlexTech Alliance offers expanded collaboration between and among industry, academia, and research organizations for advancing displays and flexible, printed electronics from R&D to commercialization.
The Girvan Institute of Technology is a non-profit, public benefit corporation chartered to facilitate the transfer, development and commercialization of technologies and to foster the growth of early-stage high-tech companies.
Scanning tunneling microscopy and molecular dynamics simulations.
IMM is a nonprofit foundation formed in 1991 to conduct and support research on molecular systems engineering and molecular manufacturing (molecular nanotechnology, or MNT). IMM also promotes guidelines for research and development practices that will minimize risk from accidental misuse or from abuse of molecular nanotechnology.
The International Association of Nanotechnology (IANT), is a non-profit organization with the goals to foster scientific research and business development in the areas of Nanoscience and Nanotechnology for the benefits of society.
Conducts nanotechnology research in various areas and has a number of nanotechnology transfer opportunities.