Nanotechnology Research – Universities

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 326 - 350 of 1230

 
The Micro and Nano Engineering area at MIT's Department of Mechanical Engineering seeks to create new engineering knowledge and products on the micro and nano-scale.
The Microfluidics and Nanofluidics Research Group at MIT is focused on understanding and controlling transport phenomena in fluidic systems at the micro and nano length scales.
The NECST Consortium's technology focus is to improve the performance of advanced aerospace materials/structures through strategic use of carbon nanotubes (CNTs) combined with traditional advanced composites to form hybrid architectures. Two primary 3D nano-engineered architectures are being explored and developed, both polymer-matrix based. The fabrication strategy involves novel synthesis of high-quality, long (several millimeters), aligned CNTs placed strategically in existing advanced composite systems. Early results have demonstrated that high-quality CNT/traditional hybrid composite laminates can be architected and fabricated at rates and scales that can be used in full-scale aerospace structures; this made the formation of the NECST industry Consortium imperative.
The Nanoengineering Group is part of the Mechanical Engineering Department at MIT. Their research is focused on nanoscale energy transport, conversion, and storage.
Prof. Jing Kong's group is designing new strategies to make graphene, MoS2, h-BN and other novel 2D materials with desired physical, chemical qualities. The in-depth understanding in how to make those materials is enabling us to develop brand new architectures for high-performance electronics and energy conversion.
A state-of-the-art laboratory in the Department of Materials Science and Engineering at MIT for probing the properties and surfaces of engineering and biological materials at atomic and molecular length scales through mechanical contact.
The research group of Prof. Nicholas Fang is dedicated to multidisciplinary fields including nano-optics, photonic/acoustic metamaterials, as well as life sciences. They aim to study the fundamental physics of nano-optics and its application in super-resolution imaging, high-speed/low-cost optical modulation device, high sensitivity biology sensor, etc. High-throughput micro/nano-fabrication techniques are developed to manufactore novel 2D/3D structures. They are the pioneer of acoustic metamaterial study to demonstrate the negative index and super-resolution focusing in ultrasonic wave.
The group of Vladimir Bulovic is developing practical devices/structures from physical insights discovered at the nanoscale.  Their work demonstrates that nanoscale materials such as molecules, polymers, and nanocrystal quantum dots can be assembled into large area functional optoelectronic devices that surpass the performance of today's state-of-the-art.  They combine insights into physical processes within nanostructured devices, with advances in thin film processing of nanostructured material sets, to launch new technologies, and glimpse into the polaron and exciton dynamics that govern the nanoscale.
Research in the Jarillo-Herrero group lies in the area of experimental condensed matter physics, in particular quantum electronic transport in novel low dimensional nanomaterials such as graphene and carbon nanotubes.
Their research is focused on fabrication of devices that exploit the quantum-mechanical properties of materials. Because superconductors provide an ideal medium for studying quantum mechanics in the solid state, they focus on superconductive materials.
A cross-disciplinary research lab at MIT inventing self-assembly and programmable material technologies aimed at reimagining construction, manufacturing, product assembly and performance.
The SNL is the premier laboratory in the world for research in interference lithography and diffraction grating fabrication.
The Strano group at MIT is interested in understanding the chemical and physical interactions that govern our ability to manipulate nanotube and nanoparticle systems, particularly those that are carbon based, for desired applications.
This inter-departmental Center brings together, MIT researchers and industrial partners to advance the science and engineering of graphene-based technologies. The Center explores advanced technologies and strategies that enable graphene-based materials, devices and systems to provide discriminating or break-through capabilities for a variety of system applications ranging from energy generation and smart fabrics and materials, to RF communications and sensing.
The Monash Centre for Atomically Thin Materials (MCATM) fosters collaboration among existing researchers at the university, bringing them together with those with expertise in atomically thin materials, as well as encouraging partnerships with international partners and industry. It also provides a highly multidisciplinary environment to train early career researchers and students.
The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology is a national innovator in bio-nano sciences and an incubator of the expertise and technological excellence required to develop next generation bio-responsive nanomaterials.
Research includes Micro/Nano precision manipulation.
Monash University is recognized as one of the leading centres of nanoscience in Australia, with world-class capabilities in nanoscale materials science and engineering and nanobiotechnology.
This facility is dedicated to the growth and characterization of magnetic films, magnetic particles, and magnetic interfaces with the goal of understanding their intrinsic behavior. A technological example of the utility of such films is in non-volatile magnetic random access memories (MRAM), high density archival storage, and magnetic nano-particle based sensors.
The laboratory aims at investigating optical and electrical properties of 2D materials for further creation of optoelectronic devices with unique properties on their basis.
Among other areas, the group works on biosensor chips based on graphene, graphene oxide and carbon nanotubes that will improve the analysis of biochemical reactions and accelerate the development of novel drugs.
The objective of the laboratory is the research of quantum phenomenon in semiconductors and hybrid nanostructures. The combination of reduced dimension, topological non-triviality of electron spectrum, strong coupling and possibilities of nanolithography provides these systems with a set of unique physical attributes. Modern experimental methods in electronic measurements, including a technique for measuring quantum fluctuation noise, ultrasensitive radio-frequency and microwave measurements, minute transport measurements in strong magnetic fields and ultralow temperatures are planned to be implemented in the laboratory.
Main lines of research are: Mesoscopic electronic systems; Superconducting hybrid structures; Quantum phase transitions; Spintronics; The two-dimensional electron gas and the quantum Hall effect; Quantum magnetism and systems with "topological order"; Physics of quantum computation.
This internationally recognized Master of Science (M. Sc.) course of study offers students of the natural sciences an advanced degree coupled with practical experience. The Course of Study may be completed in three semesters of full-time study or over a longer period of time for students whose professions only permit part-time study.
MAP develops new coherent light sources and secondary light-driven particle sources with unprecedented properties.