Nanotechnology Research – Universities

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 976 - 1000 of 1159

 
Ten Semester (Five year) Integrated Dual degree Master of Technology course in the four streams of Converging Technologies. The Master's programme will have two years of common curriculum in all fields of basic science, and engineering. The third year course involves training in all streams of converging technologies. The last two years of education will be fully customizable in specialized domains in the streams of converging technologies.
The primary aim of establishing the Centre for Converging Technologies (CCT) is to produce high quality research in the four streams of Nanotechnology, Bioinformatics and Biotechnology, Information and Communication Technology, Cognitive & Neuroscience so as to create new scientific methodologies, engineering paradigms, and industrial products. The focus will be on key areas relevant to the desired rapid growth of the Indian economy.
The objective of the team is to study the physical and chemical properties of single adsorbates and adsorbate structures on insulating films on the atomic length scale.
The BSc. Nanoscience program is a German language program and can be completed within three years.
The MSc Nanoscience program is a German language program and can be completed after the BSc program.
In the NanoBio Engineering Laboratory they develop, characterize, and implement functionalized carbon nanotubes for applications in biology and advanced materials.
Project areas include: Nanostructured materials for biological sensing; Nanoporous membranes; Nanoparticle-based drug delivery; Imaging, transport, and toxicity properties of semiconductor nanocrystals; Nanobiomechanics
Includes a research focus on near-field optical spectroscopy, nano-lithography, nano-inspection.
The group's research goal is a complete understanding of the fundamental properties of materials with a size in between individual molecules and the bulk. Currently, their investigations are focused on fundamental studies of carbon nanotubes and semiconductor nanocrystals, and the integration of these materials into both novel non-linear optical devices and biological sensors.
The group's research is about understanding the behavior of materials on the basis of their chemical structure and its effects on large length and timescales. For this reason, they develop and apply simulation methods and theory to study polymeric materials, nanomaterials and more in general soft matter.
Research in Prof. Deng's group is highly interdisciplinary, covering analytical chemistry, bio-nanotechnology, and electrochemistry. The group is working on constructing electrochemistry-based sensors for high sensitivity and easy detection of biomolecules (DNA and proteins, in particular). They are also interested in using bio-inspired processes and electrochemical approaches for the development of new tools towards nanotechnological applications.
NanoLAB is a center of activities in Nanoscale Science and Engineering within the Department of Engineering Materials at the University of Sheffield. They are dealing with Nanomanipulation in confined spaces (e.g. SEM and TEM), as well as the processing, structuring and characterisation of various nanomaterials.
The U. of Sheffield's new campus includes two prestigious new centres, the Kroto Research Institute, and the Nanoscience and Technology Centre.
Full-time MSc study entails a 12-month programme, split between Leeds and Sheffield campuses. In order to complete the full MSc programme, you must complete the eight lecture modules and a major project.
The course content reflects the highly interdisciplinary nature of this subject and allows students to specialise via choice of the Major Research Project.
Full-time MSc study entails a 12-month programme, split between Leeds and Sheffield campuses. In order to complete the full MSc programme, you must complete eight lecture modules and a major project.
A nanotechnology research program 'Nanorobotics - technologies for simultaneous multidimensional imaging and manipulation of nanoobjects' has been established by a large grant from the RCUK Basic Technology research program. The program is a collaboration between 3 University of Sheffield departments (Engineering Materials, Electrical and Electronic Engineering & Clinical Dentistry), together with researchers at Sheffield Hallam University and the University of Nottingham.
The Master in Nanoscience and Nanotechnology of the University of Siegen is a two-year 120 ECTS English language degree program offered to national and international students. It focuses on modern aspects of the science and technology of nanoscopic systems, ranging from basic knowledge to applications and devices. It consists of a set of lectures, seminars and lab courses followed by a project in a research group, accomplished by a thesis.
The research mission of the institute is to explore how chemical processes work on a microscopic scale, to develop novel methods and systems for micro and nanochemistry, and to apply this knowledge to develop novel intelligent microsystem devices, e.g. for lab-on-chip technology.
The Future Industries Institute (FII) was established in 2015 bringing together the research activities of the established Ian Wark Research Institute (IWRI), Mawson Institute (MI) and Centre for Environmental Risk Assessment and Remediation (CERAR). The FII focuses on four research strands: Minerals and Resources Engineering; Energy and Advanced Manufacturing; Environmental Science and Engineering; Bioengineering and Nanomedicine.
Xiaodong Li's lab at USC.
The group's overall research objective focuses on the development of hierarchically structured nanomaterials to study cell-cell interactions and the cooperative response of cells to extracellular matrixes.
The USC NanoCenter is the University's focal point for science and engineering studies of nanometer-scale structures, their unique properties, and their integration into functional units.
The Master's of Science degree in NanoPharmacy is designed to train students in the skills they will need to understand the burgeoning technological advances in science at the nanoscale and how new nanomaterials and processes can be applied to drug delivery, diagnosis, treatment monitoring, tissue regeneration, personalized medicine and more. This program aims to bridge the gap between nanotechnology and medicine, providing students with advanced knowledge, skills and practical experience within the principles, technology and applications within this exciting and innovative area.
The NNRC is a university-wide user fabrication and metrology center providing state-of-the-art equipment, professional support personnel and infrastructure to enable multidisciplinary research in nanomaterials and nanomanufacturing methods related to fundamental materials science, sensors, actuators, electronics, bio-systems, medical products, optics and integrated nanoscale systems.