Open menu
 

Nanotechnology Research – Universities

 

(Links listed alphabetically)

 
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | All
 

Showing results 176 - 200 of 1261

 
The group is working on nanoelectronics based on new, two-dimensional materials such as graphene and MoS2. These materials represent the ultimate limit of miniaturization in the vertical dimension and offer substantial advantages over nanotubes or nanowires.
The group develops and characterizes novel nanostructured materials for solar energy applications. The nanocomposite coatings consist typically of dielectric, semiconductor or metal nanocrystals embedded in a dielectric matrix. Applications include antireflection coatings on solar collector glazing, colored coatings with high solar transmittance for novel glazing of solar thermal facades, photoluminescent quantum dot solar concentrators for photovoltaic energy conversion, and optical selective absorber coatings for thermal solar collectors and thermoelectric power generation.
Professor Forro's group at the Institute of Physics of Complex Matter
The Sensors, Actuators and Microsystems Laboratory was created in 1982 by professor Nico F. de Rooij. Since then, SAMLAB has increased in size and has reached a staff of about 50 persons, including 15 PhD students.
The EUROPHOTONICS EMMC Master course gives an extensive two-year Master level teaching program focusing on advanced research and applied topics that will constitute the near and extended future scientific goals in the field of Photonics Engineering, Nanophotonics and Biophotonics, with interdisciplinary applications.
Four leading research and educational institutions in Europe propose a joint Erasmus Mundus Master Course entitled "Nanoscience and nanotechnology". The objective of this course is to provide top quality multidisciplinary education in nanoscience and nanotechnology.
The Nakamura Functional Carbon Cluster project is aimed at creating a wide variety of functional materials based on C60 and carbon nanotubes that are given functionality through organic synthesis.
The Department of Chemistry & Nano Science offers a comprehensive program on the fundamentals of chemistry for students who wish to have a background for graduate study in chemistry as well as for students who want a professional job in related fields. The curriculum covers various fields of chemistry including analytical, physical, polymer, organic, inorganic, and bio- chemistry. It also provides an opportunity for research experience in the laboratory throughout the senior year.
This program is comprised of three major components: arts and sciences, electrical engineering technology, and free electives. The electrical engineering technology component consists of core and concentration requirements in addition to electrical technology elective credits.
Der Studiengang Bio- und Nanotechnologien fasst die Schlüsseltechnologien Biotechnologie, Umwelttechnik, Nano- und Oberflächentechnik zusammen.
Three laboratories make up the center: the Nanomaterial Laboratory, Nanobiomedical Laboratory and Nanoelectronic Laboratory. They relate to research/development of new materials, biomedicine and light and display and energy respectively.
Nanotechnology is a specialisation within a Bachelor of Science (Honours). This specialisation is also available within the 3 year Bachelor of Science.
Nanotechnology is a specialisation within a Bachelor of Science. This specialisation is also available within the 4 year Bachelor of Science (Honours). This degree will equip you to be a part of this new industrial revolution. You will graduate ready to start working in a variety of scientific professions and to play a leading role in the future as nanotechnology grows, matures and reveals its full potential. Nanotechnology draws on the strengths of all the basic sciences and the course will give you a strong background in these sciences. In particular, there is an emphasis on developing computational skills and an awareness of the roles and uses of computers in science and society. From Second Year you will choose to specialise in one of two areas: Biomedical Nanotechnology; Quantum Nanostructures.
The Center's mission is to apply world-class, fundamental research and knowhow to provide novel, robust solutions to the challenges facing Australia, in the general areas of energy, health and water.
Students will develop the capacity to understand the basic scientific concepts underpinning nanoscience and the properties of materials and biomaterials at the atomic/molecular level and the scaling laws governing these properties. They will understand current frontier developments in nanotechnology, and recognise and develop novel and innovative ideas using a range of laboratory methods, specifically the fabrication and characterisation tools used in nanotechnology such as various microscopies, surface modifications and molecular level construction methods.
Students will develop the capacity to understand the basic scientific concepts underpinning nanoscience and the properties of materials and biomaterials at the atomic/molecular level and the scaling laws governing these properties. They will understand current frontier developments in nanotechnology, and recognise and develop novel and innovative ideas using a range of laboratory methods, specifically the fabrication and characterisation tools used in nanotechnology such as various microscopies, surface modifications and molecular level construction methods.
This facility is an open-access initiative in support of nano-scale devices, systems and materials research that encompasses a broad range of technologies and capabilities. The facility provides nanofabrication, analytical instrumentation, materials characterization and process-development laboratories for students, faculty and industrial researchers.
The research of the group interfaces with biomedical engineering, nanobiotechnology, electrochemistry, BioMEMS, biochemistry, nanomedicine, surface science, and materials science. The work done here looks ahead to the next generation of nanoelectrical components such as protein nanowires, DNA transistors as well as end use electronic devices such as Lab-on-Chip, biosensors and enzymatic biofuel cells.
The High-Performance Materials Institute at Florida State University is the pioneer in the process for manufacturing of carbon nanotube 'buckypapers'. The center has other research on-going in areas of nanotube systhesis, growth and nanocomposites.
INSI is an interdisciplinary initiative at Florida State University to foster a world-class program in the exciting emergent area of bio-nanoscience. The initiative builds on a solid foundation in bio-nanoscience at FSU that evolved from existing strengths in materials science, molecular and cell biology, chemical and biomedical engineering, chemistry and biochemistry, and physics.
The Grill group is is focussed on the study of single functionalized molecules on surfaces.
FriMat combines a leading fundamental research program on soft condensed matter and solid state physics with an innovative approach to synthesize novel compounds in order to create and study advanced materials. FriMat is determined to not only focus on the creation of novel materials and promote nanotechnology, but investigates into potential risks associated with nanoparticles, and develops new tools essential in any attempt to sample and characterize nanoparticles in the environment.
This MURI project at Georgia Tech is focused on a revolutionary new paradigm for fabricating micro/nanodevices: the synergistic use of genetic engineering, biological replication, and shape-preserving chemical conversion to generate enormous numbers of identical Genetically-Engineered Micro/nanodevices (GEMs) with tailored 3-D shapes, fine (meso-to-nanoscale) features, and chemistries.
The Mason Nanotechnology Forum has developed a Graduate Certificate in Nanotechnology and Nanoscience to address the need for qualified professionals in these critical areas. The Mason NANO graduate certificate is composed of five courses (15 credit hours) focusing on two key areas of knowledge: (1) nanomaterials and nanostructures and their relation to bulk materials, and (2) methods for characterization and production of nanomaterials.
The Mason Nanotechnology Initiative opens a space for discussion and planning of activities related to nanoscience and nanotechnology within Mason. The efforts target the development of new academic programs within the university that contain a strong component of subjects in science, mathematics and engineering, which are fundamental to nanoscience and nanotechnology.