Open menu
 

Nanotechnology Research - Universities

 

Showing results 11 - 20 of 59 for universities in Massachusetts:

 
The Mazur group at Harvard University studies the dynamics of molecules, chemical reactions, and condensed matter on very short timescales - down to femtoseconds.
Park's group at Harvard probes physical and chemical properties of nanostructured materials and develops neuron-electronic interfaces.
KIBST seeks to develop a deeper understanding of the functioning of life and biology at the nanoscale level.
The Westervelt Group has three areas of focus: 1) Imaging the coherent flow of electrons inside semiconductor nanostructures at low temperatures using scanning probe microscopy; 2) Studies of tunnel-coupled quantum dots and the fabrication of artificial molecules composed of few-electron quantum dots to implement qubits for quantum information processing; 3) Development of micro-electromagnets to trap, move, and assemble particles.
The Zhuang research lab works on the forefront of single-molecule biology and bioimaging, developing and applying advanced optical imaging techniques to study the behavior of individual biological molecules and complexes in vitro and in live cells.
The Nanotechnology Program at CMIR at Harvard University develops, optimizes and validates creative approaches to diagnosis and treatment of human disorders
The Bawendi research group at MIT
The Belcher Group at MIT is using nature as a guide to develop novel electronic and magnetic materials and to pattern materials on the nanoscale.
The Center addresses emerging and compelling gaps in our knowledge of fluid flow and molecular transport in single digit nanopores and establish the scientific foundation for developing transformative molecular separation technologies impacting the Water - Energy Nexus.
The mission of the Varanasi Group is to bring about transformational efficiency enhancements in various industries including energy (power generation to oil and gas to renewables), water, agriculture, transportation and electronics cooling by fundamentally altering thermal-fluid-surface interactions across multiple length and time scales.