Nanotechnology Research - Universities

 

Showing results 31 - 40 of 55 for universities in Massachusetts:

 
The research group of Prof. Nicholas Fang is dedicated to multidisciplinary fields including nano-optics, photonic/acoustic metamaterials, as well as life sciences. They aim to study the fundamental physics of nano-optics and its application in super-resolution imaging, high-speed/low-cost optical modulation device, high sensitivity biology sensor, etc. High-throughput micro/nano-fabrication techniques are developed to manufactore novel 2D/3D structures. They are the pioneer of acoustic metamaterial study to demonstrate the negative index and super-resolution focusing in ultrasonic wave.
The group of Vladimir Bulovic is developing practical devices/structures from physical insights discovered at the nanoscale. Their work demonstrates that nanoscale materials such as molecules, polymers, and nanocrystal quantum dots can be assembled into large area functional optoelectronic devices that surpass the performance of today's state-of-the-art. They combine insights into physical processes within nanostructured devices, with advances in thin film processing of nanostructured material sets, to launch new technologies, and glimpse into the polaron and exciton dynamics that govern the nanoscale.
Their research is focused on fabrication of devices that exploit the quantum-mechanical properties of materials. Because superconductors provide an ideal medium for studying quantum mechanics in the solid state, they focus on superconductive materials.
A cross-disciplinary research lab at MIT inventing self-assembly and programmable material technologies aimed at reimagining construction, manufacturing, product assembly and performance.
The SNL is the premier laboratory in the world for research in interference lithography and diffraction grating fabrication.
This inter-departmental Center brings together, MIT researchers and industrial partners to advance the science and engineering of graphene-based technologies. The Center explores advanced technologies and strategies that enable graphene-based materials, devices and systems to provide discriminating or break-through capabilities for a variety of system applications ranging from energy generation and smart fabrics and materials, to RF communications and sensing.
The CHN is a nanoscale science and engineering center at Northeastern in partnership with U. of Massachusetts Lowell and the U. of New Hampshire.
The center aims to perform studies on the border between two fast growing scientific areas, Biotechnology and Nanomedicine.
The George J. Kostas Nanoscale Technology and Manufacturing Research Center is the primary facility for micro and nanofabrication at Northeastern University. The Kostas facility also serves as the main facility for the new NSF Nanoscale Science and Engineering Center for High-rate Nanomanufacturing (CHN) at Northeastern University, in partnership with the University of Massachusetts Lowell, and the University of New Hampshire.
Research in Prof. Matteo Rinaldi's lab deals with nicro/nano electromechanical systems (MEMS/NEMS) devices; micro and nano fabrication; MEMS/NEMS sensors for physical, chemical and biological detection; radio frequency (RF) MEMS/NEMS devices and systems; integration of MEMS/NEMS devices with electronics; piezoelectric materials; MEMS/NEMS metamaterials; nanomaterials and nanostructures.