Nanotechnology Research - Universities

 

Showing results 1 - 10 of 39 of university labs in Japan:

 
From 2004 to 2010, the Nakamura Functional Carbon Cluster project aimed at creating a wide variety of functional materials based on C60 and carbon nanotubes that are given functionality through organic synthesis.
The RCNS consists of four research divisions: Nanodevice; Nanoprocess; Molecular Assembly and Materials Synthesis ; and System Design and Architecture.
Hokkaido Innovation through NanoTechnology Support (HINTS) is a nanotechnology support project centered at Hokkaido University (Research Institute for Electronic Science, Catalysis Research Center, Center for Advanced Research of Energy Conversion Materials, and Research Center for Integrated Quantum Electronics) with close cooperation of Chitose Institute of Science and Technology.
The PMNP Laboratory (Yan research group) is interested in high-accuracy, high-efficiency, resource-saving manufacturing technologies. Through micro/nanometer-scale material removal, deformation, and surface property control, new products with high added value are provided to micromechanical, optical, optoelectronic, and biomechanical applications. The group is exploring multidisciplinary R&D by interfacing with mechanical science, physics, material science and nanotechnology.
Major research topics are Optical Properties of Mesoscopic Particles; Fabrication and Characterization of Novel Carbonaceous Nano-Materials; Surface Plasmon and Near-Field Optics; and Optical Waveguides and Other Photonic Devices
The lab tries to construct and establish a new concept of semiconductor materials research, that is, semiconductor exciton photonics. Research includes growth techniques for low dimensional or nano-scale structures by atomic-scale controlling of surfaces and interfaces together with excitonic and photonic properties.
Research in the group involves searching for new optoelectrical phenomenons in atomic structures, which result from new quantum phenomenons as well as the co-existence of light and electrons. Design of new optoelectronics devices.
Research areas include Parallel Processors, Super-Scalar Technology, Nano-Fabrication Technology, High Speed Devices, Smart Sensors, Interconnection Technology and Micromachining.
Nano devices and bio-MEMS
The lab aims to develop the bases of future nano-electronics. Their main subjects are novel electron devices and optoelectronic devices using carbon nanotubes, high-power and high-frequency GaN transistors, and resonant-tunneling devices and functional circuits.