Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 2548 in category All (newest first):


Revolutionizing electronics: The rise of spintronics technology

spintronicsSpintronics is a technology that utilizes the spin of electrons - in addition to their charge - in order to store and process information. Unlike traditional electronics, which rely on the movement of electrons to perform their functions, spintronics uses the intrinsic angular momentum of electrons to achieve the same results. Spintronics offers the potential to address some limitations of traditional, charge-based computing and it has the potential for developing new types of devices such as spin-based transistors and logic gates.

Feb 1st, 2023

Recycling COVID-19 clinical wastes towards triboelectric touch sensors for IoT applications

mask-and-gloveThe extensive use of polymer-made, disposable and non-biodegradable COVID-19 pandemic health protectives like surgical face masks, hand gloves and PPE kits, combined with a lack of proper waste recycling systems, considerably increased plastic pollution around the world. Researchers are harnessing a new way to turn these COVID-19 pandemic wastes towards sensor design by fabricating a mask-glove-based contact-separation triboelectric nanogenerator (MG-CS TENG).

Jan 20th, 2023

A (South) African perspective on nanomedicine development

South-AfricaNanotechnology has the ability to completely transform the health care sector, particularly in developing countries like South Africa, where access to effective healthcare is still a challenge for millions of people living in poverty-stricken environments. Many African countries, despite having policies and strategies in place, struggle to allocate sufficient resources for research in nanomedicine. Most of the research conducted on the subject in Africa is focused on academic interests, rather than practical applications.

Jan 15th, 2023

How scientists can benefit from blockchain technology

blockchainBlockchain technology can be used in various ways to improve the transparency, integrity, and security of data in scientific research. For example, it can be used to create a tamper-evident record of research data, facilitate collaborations between researchers, protect intellectual property, fund scientific projects, and track the movement of materials throughout the supply chain. By using blockchain, researchers can ensure that their work is properly credited and cited, and that the data they collect is accurately recorded and preserved for future use.

Jan 11th, 2023

Nanotechnology and the Internet of Things: Boosting efficiency and capability

IoTKey components that are essential to the functioning of the Internet of Things include sensors and devices, network connectivity, data storage and processing, user interfaces, and security. Many aspects of these elements can be enhanced by nanotechnologies. Nanotechnology can enhance the performance and capabilities of IoT devices by enabling the creation of smaller, more efficient, and more versatile sensors, antennas, and processors. These improvements can lead to greater accuracy, energy efficiency, and versatility in a variety of applications, including healthcare, industrial monitoring, and environmental sensing.

Jan 9th, 2023

New experimental setup achieves unprecedented accuracy in strain engineering of 2D materials

2D-material-bendingA new motorized three-point-bending apparatus has been developed that is capable of automating strain engineering experiments on two-dimensional (2D) materials. The setup can be used to apply precise, uniform strain to 2D materials such as MoS2, allowing researchers to study the effects of strain on the electrical and optical properties of these materials. The system can also be used to study straintronic devices, devices whose output characteristics can be adjusted by means of applied strain.

Dec 16th, 2022

Biological cell plasma membranes inspire novel separator for a practical lithium-sulfur battery

fuel-cellBy mimicking a biological cell plasma membrane, i.e. the membrane that separates the interior of the cell from the outside environment, researchers have demonstrated that a 2D reduced graphene oxide membrane can regulate complex polysulfide chemistry in lithium-sulfur batteries. The efficiency of this separator in controlling the polysulfide chemistry and its sub-micron thickness allows to minimize the amount of electrolyte needed, which enables lightweight, high energy density batteries.

Dec 16th, 2022

Massive Monte-Carlo simulation guided data-driven model for 2D Curie temperature

machine-learningMagnetism at atomically thin two-dimensional (2D) materials is of essential interest to scientists and engineers since it has the potential to revolutionize modern information technology enabling ultra-fast and ultra-small novel electronic and magnetic devices. However, most of the experimentally demonstrated 2D magnets possess a Curie point far below the room temperature, limiting their application in the real world. In new work, researchers developed an end-to-end computational pipeline that can predict the Curie temperature accurately from the first principles-based quantum mechanical calculations.

Dec 12th, 2022