Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 228 in category Graphene and Other 2D Materials (newest first):


Exploring the impact of nanoparticle design on Parkinson's disease therapies

proteinAlpha-synuclein is a protein whose function in the healthy brain is currently unknown. It is of great interest to Parkinson's researchers because it is a major constituent of Lewy bodies, protein clumps that are the pathological hallmark of Parkinson's disease (PD). Scientists believe that the self-assembly of alpha-synuclein into oligomers and fibrils is linked to progress and pathogenesis of the disease. A new study suggest that important characteristics of the fibrillation process, such as surface charge and surface functional group, should be considered in the development of nanotechnology-based therapeutic approaches.

Mar 19th, 2019

Light-induced active ion transport in graphene oxide membranes

ion_transportRecent research in nanofluidics has adopted reconstructed layered two-dimensional (2D) sheets as a promising material platform for nanofluidics. These membranes contain a high volume fraction of interconnected 2D nanochannels. In new work, researchers demonstrate a coupled photon-electron-ion transport phenomenon through graphene oxide membranes. It shows a straightforward way on how to power the transport in 2D layered materials using the energy of light.

Mar 18th, 2019

Antimonene-based all-optical modulator

antimonene_nanosheetsIn recent years, all-optical modulators (AOMs) have attracted significant interests due to their low power consumption, broad bandwidth, and potential in all-optical fields. Among these, AOMs based on the high photothermal efficiency of antimonene, exhibit remarkable advantages for their large modulation depth, wide operating wavelength range, and easy implementation. Researchers demonstrated that an antimonene-based AOM was successfully utilized to actively Q-switch a fiber laser in a fully photonics domain and this actively modulated laser represented all-optically tunable output parameters, and easy time synchronization.

Mar 15th, 2019

Graphene and silk combine to make self-healable, multifunctional electronic tattoos

e-tattooElectronic tattoos (e-tattoos) are an extremely thin form of wearable electronics. They are lightweight and soft, which allows them to be intimately mounted on human skin for noninvasive, high-fidelity sensing. During the operation of e-tattoos, they are constantly exposed to external mechanical inputs such as bending, twisting, pressing, and cutting, which may cause mechanical damage and lead to malfunction. Now, researchers have demonstrated a self-healing silk e-tattoo that shows high sensitivity to multiple stimuli, including strain, humidity, and temperature based on a unique graphene, silk fibroin, Ca2+ combination.

Mar 8th, 2019

Plate-like ferroelectric crystals synthesized with the help of MXenes

2D_ferroelectric_crystalPotassium niobate (KNbO3) is a a perovskite ferroelectric crystal that, due to its optical properties, has been found useful in many different areas of materials science research, including electro-optics, piezoelectric, and electronic applications. Researchers have now, for the first time, succeeded in producing large KNbO3 crystals with uniform flat shape, and c-axis texture, which makes the crystals useful for practical electro-optic applications. By using MXenes as precursor materials to grow ferroelectric crystals, their 2D nature is inherited by the ferroelectric crystals.

Feb 25th, 2019

Defect-free graphene might solve lithium-metal batteries' dendrite problem

electrode_dendriteThe formation of dendrites on the metal electrodes of lithium metal batteries causes safety and performance concerns. To avoid dendrites, researchers are experimenting with new battery electrolyte chemistries, new separator technologies, and new physical hosts for the lithium metal. Researchers now have discovered a key design rule for Li metal batteries: If you want to suppress dendrites, you have to use a defect-free host. More generally, carbon defects catalyze dendrite growth in metal anodes.

Feb 13th, 2019

Large-scale synthesis of metal nanoclusters with thermal shocks

nanoclusterResearchers report significant advances in developing a high-temperature, fast nanomanufacturing technique for the large-scale production of ultra small metal nanoclusters decorated in a graphene host matrix. The size and morphology of the metal nanoclusters can be controlled by varying the reaction temperature and the mass loading of metal salt in the graphene aerosol nanoreactors. This one-step continuous aerosol-based thermal shock technique offers considerable potential for the manufacturing of well-dispersed and uniform nanoclusters stabilized within a host matrix.

Feb 4th, 2019

Graphene researchers are inspired by spider webs

graphene_meshMotivated by the high level of flexibility exhibited by spider webs, scientists have developed a novel design for highly flexible and sensitive piezoresistive sensors based on an elastomer-filled graphene-woven fabric (E-GWF) structure. This technique mimics the distinct core-shell structure of spider webs. This fabrication method could also be extended to other 1D and 2D materials for many emerging practical applications. In addition to excellent sensing capability, the E-GWF also shows unusual switching behavior at large strains owing to the reversible cracking and reconnection of interconnected graphene tubes.

Jan 17th, 2019