Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 288 in category All (newest first):


MXene with its X factor may help downscaling 2D transistors

transistorResearchers show how MXenes' rich chemistry can be used to create doping-free 2D transistors with intrinsically low resistive contacts while maintaining balance mode operation. With a suitable functional termination, MXenes can become a semiconductor or a metal with a different work function. The researchers exploit this unique property of MXene to propose a Schottky barrier transistor, which can be implemented with a bare MXene by converting it to a semiconductor in the channel region with strategic functionalization.

Sep 27th, 2022

A memristive forming strategy for lowering the contact resistances of two-dimensional semiconductors

Two-dimensional (2D) semiconductors, like transition-metal dichalcogenides, have become a competitive alternative to traditional semiconducting materials in the post-Moore era, and caused worldwide interest. However, before they can be used in practical applications, some key obstacles must be resolved. One of them is the large electrical contact resistances at the metal-semiconductor interfaces. Researchers have proposed a brand-new contact resistance lowering strategy of 2D semiconductors with a good feasibility, a wide generality and a high stability.

Sep 5th, 2022

Scientists create a heterostructure of diversely behaving atomic layers within a single bulk material

crystal-structureResearchers have developed a new method to create interlayered bulk materials, comprising atomically-thin layers with highly diverse electronic properties - from insulating to superconducting. The atomistic quantum mechanical simulations and electron microscopy imaging illuminate the origin of this spectacularly diverse behavior between adjacent layers of a single material. Its alternating layered structure makes this material a true 2D superconductor in bulk form and opens a plethora of intriguing questions related to the effect of interlayer coupling on the superconducting behavior.

Aug 30th, 2022

High-performance graphene nanomesh filtration membranes inspired by cell walls

nanofiltrationGraphene-based membranes have attracted considerable attention as promising candidates for new filtration technologies for filtering out nanoparticles, organic molecules, and even small inorganic salt ions. Putting a nature-inspired spin on the fabrication of high-performance graphene membranes for tricky oil/water separations - even in stable emulsions - researchers have demonstrated a graphene nanomesh membrane that possessed high hydrophilicity, super-oleophobicity and low oil adhesion underwater.

May 31st, 2022

A new member in flatland - MBenes awaiting successful synthesis

MBenesDecades of research on transition metal borides (TMBs) and their phases have led to a novel class of 2D transition metal borides termed MBenes - the boron-analogues of MXenes. Due to the very early stage of development, little is known about MBenes' physical and chemical properties, although excellent mechanical, electronic, metallic/semiconducting, capacitive, and thermoelectric properties have been theoretically predicted for them. However, even the most accurate theoretical predictions and optimistic predictions demonstrating MBenes' outstanding physical properties cannot be realized if researchers are not able to experimentally synthesize them - something the research community still is waiting for.

May 26th, 2022

Antibiotic-like boron nitride nanosheets for combating drug resistant bacteria

bacteriaThe antibiotic resistance crisis has been ascribed to the overuse and misuse of these medications, as well as a lack of motivation to develop new drugs. In the field of nanotechnology, a variety of innovative materials are being studied to evaluate their potential applications as antimicrobial agents. Recently, researchers have shown that boron nitride nanosheets as a nano-antibacterial agent displays antibiotic-like activities and BN nanosheets were found to show potent antibacterial efficiency in five multidrug resistant bacteria strains.

May 17th, 2022

Graphdiyne functionalized by silver nanoparticles to combat the threat of antibacterial resistance

bactericideThe two-dimensional carbon allotrope graphdiyne is capable of inhibiting broad-spectrum bacterial growth while exerting moderate cytotoxicity on mammalian cells. Researchers now demonstrate a high-performance bactericid with graphdiyne functionalized by silver nanoparticles. The material killed the bacteria through membrane destruction and reactive oxygen species production. These findings present an avenue to harness 2D materials to stabilize metal nanoparticles as a promising option for combating evolving bacteria.

May 11th, 2022

Combining 3D printing and self-assembly to fabricate the world's lightest material

graphene-aerogelUsing a combination of 3D printed template and self-assembly allows the fabrication of materials with complex Lego-like models with tailorable feature size crossing a record seven orders of magnitude - from nanometers to centimeters. This allows the fabrication of graphene structures with tunable mechanical properties, from super rigid (modules one order of magnitude higher than other ultralight materials) to superelastic (able to recover from extreme 95% compression).

May 10th, 2022