Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 17 - 24 of 265 in category Graphene and Other 2D Materials (newest first):

 

Programmable doping of 2D materials by nonvolatile ferroelectric domains

afmTwo-dimensional (2D) materials could offer new building blocks for future technologies, but this requires approaches to control the carrier type in 2D semiconductors. A number of pioneering works have demonstrated different methods to program the carrier type in 2D materials, such as electrostatic doping, chemical doping, ion implantation, charge transfer, and annealing control. Recently, a team of researchers have developed a technique to dope 2D materials for redefinable nanoelectronics using nonvolatile ferroelectric domains.

Feb 20th, 2020

Is hematene worth pursuing?

hemateneHematite as a magnetic photocatalyst can support the production of oxygen in its magnetic ground state and thereby improve the efficiency of hydrogen production. When hematite is made thinner, another important improvement in the efficiency of the reaction could be accomplished by expectedly more efficient separation of charge carriers upon the absorption of light on the surface. Scientists now elucidate exactly how optical and magnetic properties of hematite change when decreased in thickness to the atomistic scale.

Feb 14th, 2020

How tiny misalignments in encapsulated graphene lead to a strong modification of its electronic properties

moire-patternResearchers explain how a higher order periodic modulations due to the encapsulation of graphene between hexagonal boron nitride, called supermoire, affects the electronic and structural properties of graphene, as revealed in three recent independent experiments. High quality graphene samples are of high importance for obtaining and exploiting its theoretically described properties. Utilizing an adequate substrate reduces the corrugation and improves otherwise disorder limited properties of graphene.

Jan 29th, 2020

Transforming the greenhouse gas carbon dioxide into graphene

grapheneResearchers have produced graphene by molten carbonate electrolytic splitting of CO2 to a nano-thin carbon product (carbon nanoplatelets) comprised of 25 to 125 graphene layers, and subsequent electrochemical exfoliation of the nanoplatelets to graphene in a carbonate soluble aqueous solution. The sole products of the carbon dioxide electrolysis are straightforward: high yield carbon nanoplatelets and oxygen. The carbon nanoplatelets provide a thinner starting point than a conventional graphite reactant to facilitate electrochemical exfoliation.

Dec 2nd, 2019

The rise of graphynes

graphyneGraphyne is a little known sibling of graphene. Simulations have shown that graphyne's conduction electrons travel extremely fast - as they do in graphene - but in only one direction. That property could help researchers design faster transistors and other electronic components that process one-way current. Graphyne is distinct in being composed of sp and sp2 carbon atoms, which contrasts with graphene containing only sp2 carbon. The coexistence of sp and sp2 carbons in graphyne gives rise to unique physical properties, such as high conductivity and large carrier mobility.

Oct 31st, 2019

Graphene transistor catches mycotoxins in food

sensor-chipResearchers have developed a method for direct, point-of-use detection of mycotoxins in food. The method is based on the modification of electrolyte operated graphene filed effect transistors that have been specifically functionalized with aptamers by covalent binding. Demonstrating the performance of this method on Ochratoxin A, these sensors show a response time of within 5 minutes with a sensitivity down to 4 pg/ml - that is about three orders of magnitude less than accepted tolerance levels of Ochratoxin A.

Oct 4th, 2019

A lint roller for superclean graphene

cleaning-grapheneResearchers demonstrate that the amorphous carbon contaminants on CVD-produced graphene, which could greatly degrade its properties, can be removed by an activated carbon-coated lint roller, relying on the strong interactions between the amorphous carbon and activated carbon. Large-area graphene surfaces treated with this lint roller exhibit a high cleanliness of 99% with a low degree of polymer residue after transfer onto a functional substrate. This superclean graphene has extremely low contact resistance and ultrahigh carrier mobility.

Sep 26th, 2019

Inspired by nacre, epoxy-graphene layered nanocomposites are tough and self-monitoring

nanocompositeTo make epoxy-graphene nanocomposites, the graphene nanosheets are commonly mixed homogeneously with the epoxy matrix. However, one of the problems that bedevils these nanocomposites is the issue of agglomeration of the nanofillers. Researchers now report that they have sucessfully tackled this dispersion problem by constructing a continuous graphene-based scaffold. The results show that the team's novel strategy boosts the fracture toughness to about 3.6 times that of pure epoxy.

Sep 25th, 2019