Open menu

Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 193 in category Electronics, NEMS (newest first):

 

Microfluidics meets silver nanowires: transparent and flexible circuits with ultra precise pattern control

nanowiresResearchers have developed a new process for completely transparent and flexible circuits of any patterns as one wishes. The circuit patterns are created via the well-developed microfluidic technology on transparent and flexible substrates. The conductors are generated by spin coating of silver nanowires along the patterns. The advance stimulates more implications in future electronics. The researchers have demonstrated a simple application of the circuits as a biosensor for glucose detection.

Posted: May 31st, 2018

Moisture-powered electronics

graphVery different from piezoelectric and other energy harvesting technologies, new research shows that water vapor or moisture expand the range of natural phenomena that can be used to generate electric power. Researchers demonstrate that moisture, a vast kind of resource existing ubiquitously on earth and in biological organisms, can be exploited as a novel harvestable energy to generate electricity. Although some device configurations previously have been demonstrated to directly generate electricity from moisture, these generators have not been shown yet to be flexible and to be used as self-powered wearable devices.

Posted: May 23rd, 2018

A smart skin for marine biology research

smart_skinFrequently, research by marine biologists depends on weighty and invasive sensory and telemetry equipment to understand and assess various aspects of the marine ecosystem. Researchers generally employ invasive attachment techniques to attach these devices to animals, sometimes restricting their natural movements. These tagging systems can be quite abrasive and not so forgiving on the animals. An alternative is a newly developed developed smart skin that integrates the main desired sensor arrays for continuously logging salinity/conductivity, temperature and depth in deep oceans.

Posted: May 7th, 2018

One-dimensional quantum materials can deliver record-high current densities

nanoribbon_deviceThe advent of graphene resulted in a massive, world-wide, effort directed at investigation of other two-dimensional (2D) layered materials. One-dimensional (1D) bundled materials have received considerably less attention. Similar to the 2D layered materials with covalently bonded layers separated by the van der Waals gaps, the 1D materials consist of covalently bonded one-dimensional wires with van der Waals gaps between the wires. Researchers now have discovered that quasi-1D nanoribbons reveal an exceptionally high current density at the peak of the stressing DC current. This level of the current density exceeds that in any conventional metals like copper by almost two orders of magnitude.

Posted: Apr 19th, 2018

Nanotechnology takes steps towards artificial retinas

electronicSensory substitution with flexible electronics is one of the intriguing fields of research that takes place in nanotechnology labs around the world. In line with this focus on human senses, in the future artificial retinas integrated with the human body may not only repair damaged vision but also expand it to see a wider range wavelengths (e.g. ultraviolet light). Researchers now have demonstrated a new self-powered brain-linked vision electronic skin (e-skin) for mimicking the human retina. The general idea of our device design of brain-linked vision electronic skin is constructing an integrated flexible system including photodetector array, information analyzer, signal transmitter, and electricity power unit.

Posted: Apr 18th, 2018

Flexible data storage based on organic nanomaterials

flexible_memoryNext-generation electronic devices will be highly portable, wearable - even transplantable - lightweight, and most likely self-powered. Among the various functional block required for these systems (such as displays, sensors, actuators, etc), some of the most important components are novel flexible data storage systems that possess nonvolatile ability, high-density storage, high-switching speed, and reliable endurance properties. Especially organic memories have been considered as the most promising candidates to be used in various portable and wearable systems in future due to their remarkable advantages of nonvolatile memory features, low cost, easy fabrication, and flexibility.

Posted: Apr 9th, 2018

Batch-assembly of reconfigurable, multimodal 3D electronics (w/video)

e-whiskersWhiskers on animals allow them to build a rich understanding of their environment by feeling objects or even the flow of fluids. Many animals can also actively sweep, or 'whisk', their whiskers, enabling them to gather complex information about the architecture of their environment. Researchers have replicated this whisking action by exploiting the shape memory effect of a polymer substrate, which can be dynamically repositioned by modulating the temperature and air flow across the electronic whiskers (e-whiskers).

Posted: Apr 3rd, 2018

Photostriction of molecular 2D nanosheet

fullereneIn new work employing the photostrictive effect, researchers have fabricated a flexible two-dimensional (2D) charge transfer molecular (sub-nanometer) nanosheet and observed a sizeable photostrictive effect of 5.7% with fast, sub-millisecond response; this is higher than that of some conventional ferroelectronics and polar semiconductors. This photostrictive effect arises from excess charge carriers induced lattice dilation and conformation change, which is higher than that of some conventional ferroelectronics and polar semiconductors.

Posted: Mar 27th, 2018