Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 173 in category Fuel Cells, Hydrogen Applications (newest first):


van der Waals heterostructures harness ionic power from photo-induced ion transport

heterostructuresIn general, there are three types of driving force for ion transport: electric field; mechanical pressure; and concentration gradient. Recently, light has been propsoed as a fourth. Now, researchers report the incorporation of a transition metal dichalcogenides based van der Waals multilayer heterostructure into nanofluidic materials, and demonstrate a new photo-induced active ion transport phenomenon. This will inspire a broad range of fundamental research and practical application for light-controlled ionic circuits, artificial photosynthesis, biomimetic energy conversion, and so on.

Mar 4th, 2021

How to power implantable and ingestible electronics

smart-pillA major challenge in the development of implantable and ingestible biomedical electronic devices is the limited lifetime of their power sources. The energy requirements of these devices are highly dependent on their application and the complexity of the required electrical systems. The power unit, which is composed of one or more energy sources - batteries, energy-harvesting, and energy transfer - as well as power management circuits, supplies electrical energy to the whole system.

Feb 16th, 2021

A lithium-air battery with long cycle life and low overpotentials

In the search for battery technologies that one day could replace lithium-ion batteries and meet power demands within the size and cost constraints of car makers, aerospace and other industries, researchers are exploring lithium-air batteries (LAB). Generally, to make LAB technology practical, two goals are highly important: a novel cathode that uses a highly active and stable catalysts to enhance ORR and OER kinetics; and a proper electrolyte design that can promote the solvent-based growth mechanism for the discharge products.

Dec 29th, 2020

Concept design for a user-powered, refreshable Braille e-book reader for the blind

brailleIn order to make dynamic written content, for instance a news reader, available for blind or vision-impaired people, scientists have come up with various designs of sheet-type, refreshable Braille displays. Expanding the use of nanotechnologies in designing next-generation Braille readers, researchers now have successfully demonstrated a refreshable Braille display system by using a safe high-voltage power source - a triboelectric nanogenerator.

Nov 5th, 2020

A new breakthrough in lithium-silicon batteries

nanocompositeResearchers have discovered a novel 'sandwiched' silicon electrode structure that can withstand 500 cycles and deliver capacities three times larger than graphite. They used freestanding sheets made of carbon nanotubes - bucky papers - for sandwiching silicon nanoparticles. These nanotubes form a quasi-three-dimensional structure and hold silicon nanoparticles together even after 100 cycles and mitigate electrical resistance arising from breaking of particles. The sandwiched silicon anode was able to withstand discharging rates as high as 4C.

Jul 22nd, 2020

Fast-charging and high-capacity nanomesh-based cathodes for Li-ion batteries

nanomeshThe concept of nanostructuring of battery electrodes is not new; it has been frequently employed to improve the charging speed and, in some cases, stability of Li-ion electrodes. Researchers now demonstrated 3D-interconnected Ni nanowire meshes as current collectors and structural scaffolds for building nanostructured Li-ion electrodes. This material exhibits a semi-ordered structure and is characterized by some of the highest combined porosity and surface-to-volume ratio among macroporous metals.

Jul 6th, 2020

Powering up bacteria for green electricity

bioelectricityResearchers have identified the potential of using nanoscale carbon dots on bacteria for augmented bioelectricity production. They used this to demonstrate a novel method for significantly increasing the bacterial bioelectricity generation and applied it to set up microbial fuel cells. The results show that carbon dots' highly conductive carbon core not only improved overall systemic electrical conductivity but could also increase the packing density of the electron transfer path. This significantly improves the bioelectricity production of microbial fuel cells.

Mar 19th, 2020

Machine learning models accelerate the search for critical electrocatalysts

catalysisOxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) are among the core electrochemical processes in clean energy conversion and storage devices, such as metal-air batteries, water electrolyzers, and fuel cells. Single-atom catalysts have emerged as a new frontier of heterogeneous catalysts for these reactions due to their highly increased coverage of active sites, enhanced catalytic performance, and maximal metal utilization. By using machine learning algorithms, researchers provide a new paradigm for directly predicting the catalytic performance from physical properties of catalyst candidates.

Feb 13th, 2020