Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 180 in category All (newest first):


Machine Learning assisted computational discovery of two-dimensional energy storage materials

2D-electrode-materialResearchers developed a holistic approach, which predicts both Li-ion storage and supercapacitive properties and hence identifies various important electrode materials that are common to both devices, may pave the way for next-generation energy storage systems. By leveraging the big-data generated by the computational pipeline, the team trains crystal graph-based machine learning models and demonstrates how this data-driven model could be helpful for the rapid discovery of potential materials from other databases.

Jan 13th, 2022

Strategies for improving rechargeable lithium-ion batteries

nanoparticlesEV manufacturing requires more energy and produces more emissions than manufacturing a conventional car because of batteries. There are many unanswered questions about the life-cycle greenhouse gas implications of electric vehicles, especially related to early estimates of battery production emissions. A new review addresses these questions and the advances in new battery chemistries, plus new insights into CO2 emissions from battery manufacturing.

Dec 1st, 2021

Energetic ferroelectrics

electricity-generationResearchers demonstrated that two dissimilar materials - molecular energetic materials and ferroelectrics - can be combined to obtain a chemically driven electrical energy source with high-power density. They obtained chemically driven electrical energy with a high specific power of 1.8 kW/kg and achieve an estimated detonation velocity comparable to trinitrotoluene (TNT) and hexanitrostilbene (HNS). Such a power source could potentially be employed for on-demand energy sources, propulsion, or thermal batteries.

Oct 14th, 2021

Highly efficient separator coating for lithium-sulfur batteries

membrane-coatingLithium-sulfur (Li-S) batteries are a promising alternative to lithium-ion batteries because - at least theoretically - they can render 3-6 times higher energy density. In developing Li-S battery technology, researchers have borrowed many components from the mature lithium-ion battery, such as the separator. However, because the working mechanism of Li-S cells is fundamentally different, there is a need for a suitable separator specifically designed for Li-S. Re-engineering the separator can improve the energy density of Li-S batteries.

Aug 5th, 2021

Dual-functional epidermal patch with capability of harvesting and storing the energy in sweat

sweat-on-skinSelf-charging biosupercapacitors (BSCs) that can store energy and be self-charged via chemical or solar energy conversion through bioreaction have recently attracted considerable attention. As human sweat also contains a high concentration of lactate biofuel, the harvesting and storage of the bioenergy in sweat holds the potential to provide the power for wearable electronics. A new wearable hybrid device functions as both a biofuel cell and a supercapacitor.

Jul 8th, 2021

High activity and durable oxygen evolution single atoms supported by tungsten carbide

crystal-particleScientists have used metal carbides as the carrier to support the transition metal Fe and Ni atoms to engineer single-atom oxygen evolution catalysts for the first time. Distinct from previous studies, this novel metal carbide support shows obvious advantages for supporting different single atoms, especially its non-strong bonding features, which resulted in high mobility of the supported atoms, which might be the key point for realizing excellent OER activities.

Jul 2nd, 2021

Triboelectric nanogenerators to the rescue if you lose your sense of touch

fingertip-touchResearchers report an in vitro and in vivo proof-of-concept for the capacity of triboelectric nanogenerator (TENG) technology to function as a simple, scalable, inexpensive, and self-powered device for tactile sensory restoration. This integrated tactile sensory restoration device powers itself and is suitable for implantation. It bypasses damaged nerves and activate sensory neurons at various levels of electrical potential, generated by different levels of tactile pressure on the implanted device.

Jul 1st, 2021

van der Waals heterostructures harness ionic power from photo-induced ion transport

heterostructuresIn general, there are three types of driving force for ion transport: electric field; mechanical pressure; and concentration gradient. Recently, light has been propsoed as a fourth. Now, researchers report the incorporation of a transition metal dichalcogenides based van der Waals multilayer heterostructure into nanofluidic materials, and demonstrate a new photo-induced active ion transport phenomenon. This will inspire a broad range of fundamental research and practical application for light-controlled ionic circuits, artificial photosynthesis, biomimetic energy conversion, and so on.

Mar 4th, 2021