Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 27 in category E-Textiles, Wearable Electronics (newest first):

 

Direct printing of wearable health sensors onto skin

wearable-electronicsSkin-interfaced, wearable electronics have attracted significant attention due to their unique roles in preventative monitoring, diagnostic confirmation, and convenient therapeutic options. The ultimate application of these bio-integrated devices for practical and convenient applications hinges on the seamless integration of on-body sensors with wireless transmission modules. As a promising direction toward this class of integrated systems, soft body area sensor networks include on-body sensors for physiological signal monitoring and flexible printed circuit boards for signal conditioning/readout and wireless transmission.

Sep 15th, 2020

Direct laser-writing of graphene on Kevlar makes protective clothing 'smart'

electronicsResearchers report the direct writing of laser-induced graphene on a Kevlar textile. The transformation of Kevlar into graphene can be attributed to the photothermal effect induced by CO2 laser irradiation. Specifically, this resulted in high localized temperature, leading to the ablation and depolymerization of the Kevlar fiber. The remaining carbon atoms are recombined and 'recrystallized' into graphene. Based on this technique, it becomes feasible to prepare various types of flexible electronics on different commercial textiles such as silk and cotton. This will enable the efficient and customized preparation of multi-functional textile electronics.

Mar 11th, 2020

MXene-coated yarns as platform technology for e-textiles

knitted-fabricMXenes' inherently good conductivity and excellent volumetric capacitance makes them a very attractive material for fabricating textile-based, wearable electronics (e-textiles) that can be worn like everyday garments. This requires the fabrication of conductive yarns that are robust enough to be suitable for the wear and tear experienced by everyday textiles. A new study demonstrates highly conductive MXene-based yarns that can be washed and knitted just like conventional yarns - offering a potential platform technology for e-textile-based devices with tunable performance.

Sep 11th, 2019

Moisture-powered, multifunctional flexible sensing systems

moisture-powered-sensorResearchers demonstrate the feasibility of an environmental moisture-induced, self-powered wearable multifunctional sensing system with the ability to detect both humidity and pressure. The self-powered wearable sensing system is fabricated by integrating a flexible micropatterned pressure-sensitive film on PET as the pressure sensor and attached it onto the back of a PDA power generator. Test results prove that this moisture-powered sensor can stably and sensitively realize real-time human physiological signal detection.

Aug 12th, 2019

How to turn every piece of clothing into an e-textile

e-textileResearchers have fabricated textiles that can protect you from rain, stains, and bacteria, while they harvest the biomechanical energy of the user to power textile-based electronics. These omniphobic triboelectric nanogenerators can be incorporated into any fiber-based textile and be used to power wearable devices using energy harvested from human motion. The team also designed their nanogenerators with large-scale fabrication runs in mind, using embroidery as a technique compatible with conventional textile manufacturing techniques.

Jul 31st, 2019

Laser-induced graphene composites are eminently wearable

flexible-electronicsTo realize the commercial potential of graphene, for instance for wearable electronics, it is necessary to develop reliable, cost-effective and facile processes for the industry-scale fabrication of graphene-based devices. A novel solution involves the synthesis of high-performance stretchable graphene ink using a facile, scalable, and low-cost laser induction method for the synthesis of the graphene component. This also is the first example of using laser-induced graphene in the form for a powder preparation of graphene-based inks and subsequently for use in screen-printing of stretchable micro-supercapacitors.

Jun 14th, 2019

Weaving carbon nanotube wires into high-performance, wearable supercapacitors

textile-batteryResearchers have developed a comprehensive approach involving simple and facile steps to fabricate a wearable energy storage device based on carbon nanotube coated cotton yarn. All device components are flexible. According to the team, this is the first device that has been proven to be stable under rigorous washing conditions in the presence of hot water, detergents and high torque (spinning action of washing machine). This provides the device with comprehensive mechanical stability.

May 15th, 2019

Triboelectric nanogenerators for next-generation wearable health monitoring

nanogeneratorDozens of nanotechnology research groups worldwide are working on the development of triboelectric nanogenerators (TENGs) for harvesting energy from mechanical vibrations. The huge interest in TENGs stems from their ability to convert ambient mechanical energy into electricity for powering wearable electronics, energy generation using sound, sensor networks, removing air pollution with nanogenerator-enhanced air filters, implantable medical devices, and other small systems. A recent article comprehensively reviews the recent advances in TENG-based health monitoring.

Apr 12th, 2019