Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 2232 in category All (newest first):


Laser-induced graphene composites are eminently wearable

flexible-electronicsTo realize the commercial potential of graphene, for instance for wearable electronics, it is necessary to develop reliable, cost-effective and facile processes for the industry-scale fabrication of graphene-based devices. A novel solution involves the synthesis of high-performance stretchable graphene ink using a facile, scalable, and low-cost laser induction method for the synthesis of the graphene component. This also is the first example of using laser-induced graphene in the form for a powder preparation of graphene-based inks and subsequently for use in screen-printing of stretchable micro-supercapacitors.

Jun 14th, 2019

MOF-encapsulated DNA for gene therapy

gene-deliveryA critical challenge in gene therapy is the safe and effective delivery of genetic materials across cell membranes into target cells. Although viral systems have been the most effective method for delivering genetic matter into cells, they pose significant safety problems. Demonstrating a novel alternative delivery vector, researchers have developed a facile one-pot strategy to encapsulate plasmid DNA into nanoscale metal-organic frameworks (MOFs) and a MOF-polymer system Experiments showed that pDNA molecules could be well distributed throughout the MOF nanostructures and benefited from effective protection against the enzymatic degradation.

Jun 13th, 2019

How to characterize nanoparticles

nanoparticlesNanoparticle characterization is a broad and complex discipline. Even today, researchers are still challenged by the task of determining the physicochemical properties of nanoparticles and exploring their structure-function relationships. A recent review article provides a set of guidelines to investigate and characterize the key parameters defining a nanoparticle sample, namely size, shape, surface charge, and porosity. It also provides recommendations of how the physicochemical parameters of nanoparticles should be investigated, and how to characterize these key properties in different environments according to the intended nanoparticle use.

Jun 5th, 2019

Turning agricultural biowaste into high-value 3D-printing materials

sensorBagasse is a waste plant matter obtained by food industry processes with major potential for several high-value products. An innovative idea of utilizing bagasse is for production of nanocellulose and testing this for wound dressing devices, manufactured by 3D printing. The next step in the development of wound dressings is the personalized aspect of the biomaterials, i.e. wound dressings that are structured and composed of constituents specially selected for a specific wound and wound treatment. Furthermore, sensors could be integrated into wound dressings and thus monitor various aspects of wound development, e.g. moisture and exudates in chronic wounds.

Jun 3rd, 2019

Let's do the twist - rotation-tunable 2D electronics

moire-patternResearchers commonly observe a relative rotation between individual layers of 2D materials. Importantly, these interlayer rotation angles, i.e. at what angle two individual layers are oriented towards each other, influence the electronic properties of the resulting material system. In new work, researchers reveal a general moire-driven mechanism that governs the interlayer rotation. At the core of these findings is the concept of the van der Waals dislocation, a term the team uses to describe the commensurability/incommensurability defect in bilayer crystalline materials.

May 31st, 2019

Exploration of TiO2 nanoparticle mediated microwave therapy on cancer treatment

cancer-cellThe use of TiO2 nanoparticles activated by light and ultrasound has been studied extensively for cancer treatments. For the first time, researchers have shown the nanoparticles can be effectively activated by microwaves for cancer cell destruction - potentially opening new doors for patients fighting cancer. They propose the use of microwaves and TiO2 nanoparticles to induce the production of reactive oxygen species (ROS), which has the potential to be a safer, more effective modality for cancer treatment.

May 30th, 2019

Improving the performance of carbon nanotube fibers

CNT-fiberCarbon nanotube (CNT) fiber is an important one-dimensional macroscopic material. The directional assembly of CNTs can help the fiber realize high mechanical, high electrical and high thermal performance. By introducing thermosetting polymer between the carbon nanotube fibers, the cured polymer can overcome the weak van der Waals interaction between the CNTs and further improve the fiber thermal transport. This results in an effective improvement in thermal conductivity and mechanical properties of CNT fibers.

May 21st, 2019

Magnetically propelled MOFBOTs perform microrobotic drug delivery (w/video)

MOFBOTBy applying concepts developed in micro- and nanorobotics, researchers demonstrate the controlled motion and delivery of cargo payloads embedded in metal-organic frameworks (MOFs). The helical MOF-based micromachine, propelled by artificial bacterial flagella, can swim and follow complex trajectories in three dimensions under the control of weak rotational magnetic fields. These swimmers are tumor-responsiv and can act as selectively automated and targeted drug delivery platforms.

May 20th, 2019