Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 33 - 40 of 2251 in category All (newest first):


Two-dimensional (2D) rare earth nanomaterials

rare-earth-materialRare earth metals and alloys that contain them are used in many devices that people use in their everyday lives. Whereas the research on two-dimensional (2D) nanomaterials such as graphene, hexagonal boron nitride, MXenes, transition metal dichalcogenides, or metal-organic frameworks moves full-steam ahead, overview reports on 2D rare earth materials are, well, rare. However, with the electron confinement within mono- or multi-layers, the optical, magnetic, electric, catalytic, and adsorptive properties of ultrathin 2D rare-earth nanomaterials may also vary remarkably from those of the bulk phase, opening up great opportunities for applications in numerous areas.

May 7th, 2019

Building large graphene aerogel walls

graphene_aerogelHighly compressible graphene aerogels possess extraordinary properties that exceed the performance of natural materials - superior compressive elasticity; ultrahigh porosity; outstanding tolerance for harsh environment; large specific surface area; high electrical and thermal conductivity. Now, researchers have fabricated graphene aerogel 'bricks' that can be assembled into much larger aerogel structures. These highly oriented and dense microstructures possesses arbitrary macroscale, outstanding compressive strength, superelasticity, and high conductivity.

May 6th, 2019

On route to artificial retinas with microcavity perovskite photoreceptors

photodetectorElectronic device versions of the human eye's photoreceptors could potentially be used in a wide range of applications from robotic humanoid vision to artificial retina implantation for vision restoration or even vision extension into a wider range of wavelength. Researchers have now demonstrated that high-performance filterless artificial human photoreceptors can be realized by integrating a novel optical metal/dielectric/metal microcavity structure with vacuum-deposited perovskite photoresponse devices. These easy-to-fabricate artificial photosensors mimic the spectral responses of human color cones and rods.

May 1st, 2019

Self-powered system instantaneously harvests and stores energy

nanogeneratorResearchers introduced an exclusive self-charging and self-healing flexible asymmetric supercapacitor power cell proficient to sustainably power-up portable electronics by simply applying mechanical bio-mechanical stresses. This self-charging power cell/package comprises an asymmetric supercapacitor unit sandwiched in-between two parallel connected triboelectric nanogenerators and reveals exceptional output performances. Additionally, this nanogenerator cell exhibits remarkable self-healing behavior.

Apr 30th, 2019

Intercalation energy tuning improves performance of multivalent ion batteries

interlayer_spacingAqueous rechargeable batteries based on earth abundant materials are promising alternatives to lithium-ion batteries, which are plagued by safety and environmental concerns. These batteries utilize water-based electrolytes, which are safe, low-cost, and environment-friendly, but also possess a much higher ionic conductivity than that of the organic electrolytes. In new work, researchers report an effective and general strategy to transform inactive intercalation hosts into efficient zinc ion storage materials through intercalation energy tuning.

Apr 26th, 2019

[email protected] nanotube heterojunctions as promising material for photodetectors

nanotubeResearchers demonstrate, for the first time, a [email protected] ([email protected]) heterostructure used as a working material in a photoelectrochemical-type photodetector. Specifically, [email protected] nanotube heterojunctions synthesized by epitaxial growth of selenium on tellurium nanotubes exhibit a largely enhanced self-powered photoresponse, significantly improved photocurrent density, and photoresponsivity compared to those of Te or Se nanomaterials.

Apr 25th, 2019

Perfectly-absorbing photoconductive metasurface significantly improves THz detection

THz-detectorTerahertz (THz) frequencies, which occupy a middle ground between microwaves and infrared light, are seen as the future of wireless communications because they offer a higher bandwidth capacity for data transmission than currently used microwave radiation. Researchers have improved the photoconductive switch, a key optoelectronic element in THz technology, with a perfectly-absorbing photoconductive metasurface. The perfect absorption within this metasurface allows to make the active region of THz wave detectors significantly thinner in comparison to conventional detectors. Apart from reducing the size of THz detectors, it also improves their efficiency.

Apr 24th, 2019

Estimating the occurrence of nanomaterials in the environment

nanomaterialsTo perform a risk assessment of nanomaterials in the environment, information on the exposure, i.e. the amounts that are present in the environment, is essential. In contrast to many other known pollutants, the concentrations of nanomaterials in environmental systems cannot be measured directly. In this situation, exposure modelling is a solution to estimate the environmental exposure with synthetic nanomaterials. In order to predict the amount of a nanomaterial in a certain environmental compartment (environmental exposure) present in a certain area, two basic types of models are required - material flow analysis and environmental behaviour modelling.

Apr 23rd, 2019