Nanotechnology Spotlights

From atoms to nanoparticles to living matter

nanoparticleWhereas the evolutionary path of the atomic world has occurred over billions of years, the evolutionary path of the synthetic nanoparticle world has just begun. Man-made nanoparticle assemblies are beginning to revolutionize different fields including thermoelectronics, photoelectronics, catalysts, energy generation and storage, as well as medical diagnostics and therapeutics. Using the unconventional approach of comparing...

Jan 22, 2019

Read more

Super-stable antinomy carbon composite anodes to boost potassium storage performance

electrode_materialPotassium-ion batteries (PIBs) have been considered as promising alternatives to lithium-ion batteries due to the rich natural abundance of potassium and similar redox potential with Li+/Li. Recently, researchers have designed and fabricated a novel antimony carbon composite PIB anode via a facile and scalable electrospray-assisted strategy and found that this anode delivered super high specific capacities as well as cycling...

Jan 21, 2019

Read more

Nanowire meshes to improve electrochemical devices

nanomeshBy re-designing interconnected nanowire networks, researchers fabricated novel nanostructured current collectors, which are the first to combine very high surface area, high porosity, substantially large pores and mechanical flexibility. Thanks to its ordered microstructure, the material can uniquely combine high porosity of cellular metal foams with high surface area of state-of-the-art nanoporous dealloyed metals, which...

Jan 18, 2019

Read more

Graphene researchers are inspired by spider webs

graphene_meshMotivated by the high level of flexibility exhibited by spider webs, scientists have developed a novel design for highly flexible and sensitive piezoresistive sensors based on an elastomer-filled graphene-woven fabric (E-GWF) structure. This technique mimics the distinct core-shell structure of spider webs. This fabrication method could also be extended to other 1D and 2D materials for many emerging practical applications....

Jan 17, 2019

Read more

A solid-state nanopore platform for digital data storage

dna_computingUsing DNA to directly store data is an attractive possibility because it is extremely dense and long-lasting. Currently, though, synthesizing and sequencing DNA molecules for storing large amounts of data involves complex devices and is very expensive. In an effort to make data storage in DNA more affordable and commercially viable, researchers have combined nanopore sensing and DNA nanotechnology in a solid-state nanopore...

Jan 15, 2019

Read more

The stressful life of high-capacity electrodes

microcantilever_arrayOne of the persistent challenges associated with electrode degradation and battery failure is the stress induced by ion intercalation, companied by large volume fluctuation of electrode materials. Although researchers have developed numerous in situ microscopy and spectrometry technologies that provided valuable insights into the impacts of the stress buildup and release, the strength of the localized stress at the micro-...

Jan 10, 2019

Read more

Scientists use 2D h-BN nanosheets as the planar-alignment agent in a liquid crystal device to improve its optical transmission

hexagonal_boron_nitrideResearchers report an interesting phenomenon of two-dimensional (2D) hexagonal boron nitride (h-BN)-induced planar-alignment of a nematic liquid crystal and the subsequent optical and electro-optical effects. Liquid crystals (LCs) are optically anisotropic materials, and they are widely used in electro-optical display technology, known as liquid crystal displays (LCDs). Understanding the alignment phenomena of a nematic LC...

Jan 09, 2019

Read more

Research highlights sustained electron transport kinetics of graphites for at least 9 weeks

electron_transportSluggish electron transport kinetics - also known as aging - has hindered the application of graphene, for example, as transparent photodiode sensors in optoelectronics, graphites for effective use as oxygen reducing agents in fuel cells and so many other applications that involve fast heterogeneous electron transport and even increased capacitance. Scientists now report a breakthrough solution to the oxidation-induced sluggish...

Jan 08, 2019

Read more

Graphene and other 2D materials for advanced solar cells

graphene_photovoltaicsDue to their excellent electron-transport properties and extremely high carrier mobility, graphene and other other direct bandgap monolayer materials such as transition-metal dichalcogenides (TMDCs) and black phosphorus show great potential to be used for low-cost, flexible, and highly efficient photovoltaic devices. A recent review provides a comprehensive overview on the current state-of-the-art of 2D-materials-based solar...

Jan 07, 2019

Read more
Read more nanotechnology spotlights