Spintronics is a technology that utilizes the spin of electrons - in addition to their charge - in order to store and process information. Unlike traditional electronics, which rely on the movement of electrons to perform their functions, spintronics uses the intrinsic angular momentum of electrons to achieve the same results. Spintronics offers the potential to address some limitations of traditional, charge-based...
Read more
The extensive use of polymer-made, disposable and non-biodegradable COVID-19 pandemic health protectives like surgical face masks, hand gloves and PPE kits, combined with a lack of proper waste recycling systems, considerably increased plastic pollution around the world. Researchers are harnessing a new way to turn these COVID-19 pandemic wastes towards sensor design by fabricating a mask-glove-based contact-separation...
Read more
Nanotechnology has the ability to completely transform the health care sector, particularly in developing countries like South Africa, where access to effective healthcare is still a challenge for millions of people living in poverty-stricken environments. Many African countries, despite having policies and strategies in place, struggle to allocate sufficient resources for research in nanomedicine. Most of the research...
Read more
Blockchain technology can be used in various ways to improve the transparency, integrity, and security of data in scientific research. For example, it can be used to create a tamper-evident record of research data, facilitate collaborations between researchers, protect intellectual property, fund scientific projects, and track the movement of materials throughout the supply chain. By using blockchain, researchers...
Read more
Key components that are essential to the functioning of the Internet of Things include sensors and devices, network connectivity, data storage and processing, user interfaces, and security. Many aspects of these elements can be enhanced by nanotechnologies. Nanotechnology can enhance the performance and capabilities of IoT devices by enabling the creation of smaller, more efficient, and more versatile sensors, antennas,...
Read more
A new motorized three-point-bending apparatus has been developed that is capable of automating strain engineering experiments on two-dimensional (2D) materials. The setup can be used to apply precise, uniform strain to 2D materials such as MoS2, allowing researchers to study the effects of strain on the electrical and optical properties of these materials. The system can also be used to study straintronic devices,...
Read more
By mimicking a biological cell plasma membrane, i.e. the membrane that separates the interior of the cell from the outside environment, researchers have demonstrated that a 2D reduced graphene oxide membrane can regulate complex polysulfide chemistry in lithium-sulfur batteries. The efficiency of this separator in controlling the polysulfide chemistry and its sub-micron thickness allows to minimize the amount of...
Read more
Magnetism at atomically thin two-dimensional (2D) materials is of essential interest to scientists and engineers since it has the potential to revolutionize modern information technology enabling ultra-fast and ultra-small novel electronic and magnetic devices. However, most of the experimentally demonstrated 2D magnets possess a Curie point far below the room temperature, limiting their application in the real world....
Read more
Researchers achieved a milestone in the synthesis of multifunctional photonic nanomaterials. They reported the synthesis of semiconductor 'giant' core-shell CdZnSe/CdS quantum dots with record breaking emissive lifetimes. Furthermore, the lifetimes can be tuned by making a simple alteration to the material's internal structure. These new particles have great efficacy for fundamental biological discovery as they emit...
Read more
Recent investigations suggest that topological semimetals reveal unique properties that can enable unprecedented functionalities for future electronics. New research results shed light on the specifics of electron transport in quasi-one-dimensional topological Weyl semimetals and can be important for their proposed applications as downscaled interconnects. The results obtained in this work can be used for developing...
Read more