‚Äč

Nanotechnology Spotlights

Exploring the impact of nanoparticle design on Parkinson's disease therapies

proteinAlpha-synuclein is a protein whose function in the healthy brain is currently unknown. It is of great interest to Parkinson's researchers because it is a major constituent of Lewy bodies, protein clumps that are the pathological hallmark of Parkinson's disease (PD). Scientists believe that the self-assembly of ?-synuclein into oligomers and fibrils is linked to progress and pathogenesis of the disease. A new study suggest...

Mar 19, 2019

Read more

Light-induced active ion transport in graphene oxide membranes

ion_transportRecent research in nanofluidics has adopted reconstructed layered two-dimensional (2D) sheets as a promising material platform for nanofluidics. These membranes contain a high volume fraction of interconnected 2D nanochannels. In new work, researchers demonstrate a coupled photon-electron-ion transport phenomenon through graphene oxide membranes. It shows a straightforward way on how to power the transport in 2D layered materials...

Mar 18, 2019

Read more

Antimonene-based all-optical modulator

antimonene_nanosheetsIn recent years, all-optical modulators (AOMs) have attracted significant interests due to their low power consumption, broad bandwidth, and potential in all-optical fields. Among these, AOMs based on the high photothermal efficiency of antimonene, exhibit remarkable advantages for their large modulation depth, wide operating wavelength range, and easy implementation. Researchers demonstrated that an antimonene-based AOM was...

Mar 15, 2019

Read more

Bottom-up assembled chiral meta-molecules

meta-moleculeInspired by chiral molecular structures, scientists are developing strategies to build artificial chiral materials by mimicking natural molecular structures using functional materials. Specifically, metal nanomaterials exhibit tailorable optical properties upon excitation of surface plasmons and become one of the most promising components to realize chiral optical metamaterials. New work provides a macroscopic model to understand...

Mar 14, 2019

Read more

Graphene and silk combine to make self-healable, multifunctional electronic tattoos

e-tattooElectronic tattoos (e-tattoos) are an extremely thin form of wearable electronics. They are lightweight and soft, which allows them to be intimately mounted on human skin for noninvasive, high-fidelity sensing. During the operation of e-tattoos, they are constantly exposed to external mechanical inputs such as bending, twisting, pressing, and cutting, which may cause mechanical damage and lead to malfunction. Now, researchers...

Mar 08, 2019

Read more

Plasmonics in the clouds

plasmonic_aerosolScientists have experimentally realized a plasmonic aerosol by efficiently transitioning liquid suspensions of gold nanorods into the gas phase and simultaneously measuring their optical spectra. They demonstrated that these aerosols are optically homogeneous, thermodynamically stable, with wide wavelength tunability (by controlling the aspect ratio of the nanorods) and have extremely large sensitivities to their environment....

Mar 06, 2019

Read more

Green and flexible protein-based electronics

e-gloveIonic conductors are a class of materials with key roles in energy storage, solar energy conversion, sensors, and electronic devices. In their quest towards eco-friendly alternatives for the current type of ionic conductors, researchers have developed an alternative green option based on organic silk and inorganic green laponite for the display and wearables industry via flexible and eco-friendly ionics. This could ultimately...

Mar 05, 2019

Read more

Plasmonic pixels become dynamic

plasmonic_pixelsResearchers demonstrate a display pixel that can switch on and off at least 1000 times faster than pixels that use conventional liquid crystal materials. They show that plasmonic gold nanorods - which interact very strongly with light - can be aligned using electric fields, and they use this alignment to control the amount of light that can pass through the pixel. By engineering the dimensions and material structure of the...

Mar 04, 2019

Read more

Vitamins are good for your multi-energy nanogenerator

spectrometerResearchers report a simple, innovative and inexpensive design of a vitamin-based hybrid biocompatible nanogenerator with energy harvesting ability from various energy sources in a single device. This is the first time that inexpensive and biocompatible vitamin B2 has been used as a novel and effective beta-phase stabilizer to enhance the piezoelectric performance of PVDF. The attractiveness of using vitamin B2 is that it...

Feb 28, 2019

Read more
Read more nanotechnology spotlights