Nanotechnology Spotlights

Switching peroxidase activity of gold nanoparticles to detect proteolytic biomarker

coated_gold_nanoparticlesNanoparticles that mimic the complexity and function of natural enzymes can act as effective peroxidase to catalyse for the oxidization of 3,3,5,5-tetramethylbenzidine (TMB), generating an oxidised blue-coloured product. For the first time scientists found that when the surface of gold nanoparticle (AuNPs) is coated with casein, the intrinsic peroxidase-mimicking activity of AuNPs is suppressed strongly, i.e. by up to 77.1%,...

Dec 06, 2018

Read more

Controlling immune response expands the possibilities of therapeutic nucleic acid technologies

nucleic_acidThe idea has been around for a while that selected segments of RNA or DNA could be used therapeutically to affect gene or cell function. The attraction for researchers is the flexibility that these therapeutic nucleic acids' (TNAs) versatility, programmability, and modularity affords them and shows a promising route towards treatment for a wide variety of disorders such as cancer, metabolic disorders, viral infections, cardiovascular...

Dec 05, 2018

Read more

A graphene NEMS switch to protect against electrostatic discharging

suspended_grapheneOne of the most pervasive reliability problems facing the computer chip industry is ESD (electrostatic discharging) failure caused by the rapid, spontaneous transfer of electrostatic charge induced by a high electrostatic field. A novel above-IC graphene based nanoelectromechanical system (NEMS) switch structure for on-chip ESD protection utilizes the unique properties of graphene. This switch is a two-terminal device with...

Dec 04, 2018

Read more

'Artificial leaf' uses visible light to accelerate chemical reactions

plasmonicsOver the past several years, metal nanoparticles photosensitization over semiconductors with a large band gap has emerged as a promising strategy for developing visible-light responsive photocatalytic materials. In new work, researchers demonstrate a new plasmonic metamaterial can absorb nearly 100% of incident light (of a specific color) and use this energy to accelerate the production of chemicals. In constructing the near-perfect...

Nov 28, 2018

Read more

Using a virus to make a better type of memory

virusIn a groundbreaking study, researchers have successfully developed a method that could lead to unprecedented advances in computer speed and efficiency. Through this study, researchers successfully developed a method to make a version of biological patterning for nonvolatile memory technology using the M13 bacteriophage - a virus. This possibility leads the way to the nanosecond storage and transfer delays needed to progress...

Nov 27, 2018

Read more

Whispers about graphene's electrical properties

whispering-galleryScientists report the experimental results of studying the response characteristics in a millimeter wave band whispering gallery mode sapphire resonator to single-layer graphene at different distances of graphene from the resonator. They found that the evanescent field of the resonance system is extremely sensitive to the environment, surrounding materials and disk coatings. A series of experiments showed that such whispering...

Nov 21, 2018

Read more

Manufacturing open-mesoporous carbon nanofibers for flexible and wearable power sources

metal-air-batteryRecently, researchers have engineered a next-generation battery technology - known as metal-air batteries - which can be easily fabricated into flexible and wristband-like cells. Although metal-air batteries powered devices still are not ready yet for commercial applications, the current studies have established solid evidence that these devices have provided enormous opportunities to develop the next generation of flexible,...

Nov 20, 2018

Read more

Nanotribological printing - a novel 3D nanotechnology fabrication technique

nanostructureA novel nanoscale additive manufacturing technique termed Nanotribological Printing creates structures through tribomechanical and tribochemical surface interactions at the contact between a substrate and an atomic force microscope probe, where material pattern formation is driven by normal and shear contact stresses. This technique advances the field of nanomanufacturing by providing a versatile and easily accessible method...

Nov 13, 2018

Read more

Beta-lead oxide quantum dots

2D-materialIn recent years, black-phosphorus-analogue (BPA) two-dimensional materials have been demonstrated to exhibit promising optoelectronic performances and distinguished ambient stabilities, holding great promise in practical applications. In new work, researchers demonstrated that ultra-small 2D beta-lead oxide quantum dots showed fast carrier dynamics and significantly high photocurrent density and excellent ambient stability....

Nov 06, 2018

Read more
Read more nanotechnology spotlights