‚Äč

Nanotechnology Spotlights

Morphing 2D circuits - next-generation microfluidics gets rid of solid walls

microfluidicsOne of the issues with microfluidic devices in life sciences is that most platforms rely on materials or chemicals that are outside the biological breadth as building blocks, scaffolds, or coatings for the devices. In a game-changing approach, researchers are developing a transformative way to fabricate microfluidic devices, where solid walls are replaced by transparent, morphing fluid walls using only biocompatible materials....

Nov 19, 2020

Read more

Piezoelectric energy absorption in quantum interfaces

quantum-computingResearchers have developed a theory of piezoelectrics with the goal to increase coherence times in quantum computers. In new work, they elucidate the mechanism of energy absorption taking place in quantum computers, and recommends optimal materials for these devices. The new theory predicts qubit coherence times that are over 100 times greater than the current state of the art. This shows that material improvements can go...

Nov 18, 2020

Read more

MBenes - boron-analogues of MXenes - enable efficient electrochemical synthesis of ammonia

MBeneThe industrial production of ammonia mostly relies on the energy-intensive Haber-Bosch process, which causes significant environmental pollution. Researchers have now proposed that a class of 2D transition metal borides termed MBenes - the boron-analogues of MXenes - could be used as catalyst for ammonia production through electrochemical nitrogen reduction reaction (NRR). This work also provides a general design principle...

Nov 17, 2020

Read more

Core/shell nanoparticles as efficient reducing agents

quantum-dot-modelGenerally it is believed that core quantum dots (QDs) are good reducing agents and are used for that purpose in solar hydrogen generation and various organic transformations. However, core QDs are very unstable. Core/shell dots are more robust, but the shell minimizes redox activity. Researchers now demonstrate that this isn't perfectly true. In fact, they found that certain core/shell materials are a better reducing agent...

Nov 13, 2020

Read more

Surface chemistry of engineered nanoparticles allows to differentiate cancer stem cells

nanoparticleWith their ability to resist conventional chemotherapy drugs, cancer stem cells (CSC) are really difficult to kill, and they are considered to be key drivers in metastasis, the spread of cancer via the blood stream. If the frequency of CSCs could be diminished, tumors would be rendered less aggressive and more responsive to conventional therapy. This approach is known as differentiation therapy and has considerable therapeutic...

Nov 10, 2020

Read more

Nanotechnology's role in the race to find a Covid-19 vaccine

mRNA-vaccineWith over 200 COVID-19 vaccine trials currently underway globally, nanotechnology is being pivoted for COVID-19 applications. Nanoparticles and viruses operate on the same scale, and thus there are various nanotechnological aides which are being used in the development of potential vaccines. Nanoparticles are capable of entering the cell through biological channels, and can deliver antigens there. Besides delivering antigens...

Nov 09, 2020

Read more

Concept design for a user-powered, refreshable Braille e-book reader for the blind

brailleIn order to make dynamic written content, for instance a news reader, available for blind or vision-impaired people, scientists have come up with various designs of sheet-type, refreshable Braille displays. Expanding the use of nanotechnologies in designing next-generation Braille readers, researchers now have successfully demonstrated a refreshable Braille display system by using a safe high-voltage power source - a triboelectric...

Nov 05, 2020

Read more

Promising baby steps toward brain-inspired computing

nanoelectrodeThe biggest challenge for the development of brain-inspired computing is that the brain is too complex to simply emulate on a chip. Its massive interconnectivity, redundancy, local activity, remarkable logic complexity, and functional non-linearity makes the brain a computing masterpiece. Many researchers in this field see memristors as a key device component for neuromorphic computing. In particular, a non-conventional genre...

Nov 02, 2020

Read more

Nanomechanical indentation measurements with force spectroscopy

nanoidentationTaking advantage of its piconewton force and sub-nanometer displacement resolution, atomic force microscopy (AFM) is uniquely suited to measure nanoscale mechanical properties, especially when it comes to soft materials. Force spectroscopy is a useful nanomechanical technique to obtain both single point measurements and maps of important mechanical properties such as stiffness and adhesion. Cantilever and tip calibrations...

Oct 30, 2020

Read more

High-entropy alloy nanoparticles show excellent resistance to oxidation

nanoparticleHigh-entropy alloys (HEAs), which are formed by combining nearly equal parts of several primary metals, are an emerging class of advanced materials that hold great potential for creating materials with superior mechanical, thermal, and catalytic properties. New research offers key insights into how HEA nanoparticles behave under high-temperature oxidizing environment and sheds light on future design options of highly stable...

Oct 29, 2020

Read more
Read more nanotechnology spotlights