Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 497 in category Fabrication Technologies and Devices (newest first):

 

Turning agricultural biowaste into high-value 3D-printing materials

sensorBagasse is a waste plant matter obtained by food industry processes with major potential for several high-value products. An innovative idea of utilizing bagasse is for production of nanocellulose and testing this for wound dressing devices, manufactured by 3D printing. The next step in the development of wound dressings is the personalized aspect of the biomaterials, i.e. wound dressings that are structured and composed of constituents specially selected for a specific wound and wound treatment. Furthermore, sensors could be integrated into wound dressings and thus monitor various aspects of wound development, e.g. moisture and exudates in chronic wounds.

Jun 3rd, 2019

Building large graphene aerogel walls

graphene_aerogelHighly compressible graphene aerogels possess extraordinary properties that exceed the performance of natural materials ? superior compressive elasticity; ultrahigh porosity; outstanding tolerance for harsh environment; large specific surface area; high electrical and thermal conductivity. Now, researchers have fabricated graphene aerogel 'bricks' that can be assembled into much larger aerogel structures. These highly oriented and dense microstructures possesses arbitrary macroscale, outstanding compressive strength, superelasticity, and high conductivity.

May 6th, 2019

Bottom-up assembled chiral meta-molecules

meta-moleculeInspired by chiral molecular structures, scientists are developing strategies to build artificial chiral materials by mimicking natural molecular structures using functional materials. Specifically, metal nanomaterials exhibit tailorable optical properties upon excitation of surface plasmons and become one of the most promising components to realize chiral optical metamaterials. New work provides a macroscopic model to understand the origin of chirality because the structures of the chiral meta-molecules are observable under a microscope and also the optical chirality is several orders of magnitude stronger than the intrinsic chirality of organic molecules.

Mar 14th, 2019

Vitamins are good for your multi-energy nanogenerator

spectrometerResearchers report a simple, innovative and inexpensive design of a vitamin-based hybrid biocompatible nanogenerator with energy harvesting ability from various energy sources in a single device. This is the first time that inexpensive and biocompatible vitamin B2 has been used as a novel and effective beta-phase stabilizer to enhance the piezoelectric performance of PVDF. The attractiveness of using vitamin B2 is that it is biodegradable and biocompatible, thermodynamically stable, low-cost, has delocalized pi-electrons, contains multiple numbers of hydroxyl groups, carbonyl groups and amino groups in its backbone.

Feb 28th, 2019

Using DNA molds for templating nanoparticles into 2D patterns

nanopatterningDNA nanotechnology employs DNA as a programmable building material for self-assembled, nanoscale structures with precisely controlled structures, that can lead to improved surface properties relevant to biosensing, materials science, and cell biology. Adding to the available tools for DNA nanopatterning, researchers have demonstrated a novel biotemplating strategy for ordering various nanoparticles into expected two-dimensional (2D) patterns via nanoparticle-surface or nanoparticle-DNA interaction.

Feb 27th, 2019

Plate-like ferroelectric crystals synthesized with the help of MXenes

2D_ferroelectric_crystalPotassium niobate (KNbO3) is a a perovskite ferroelectric crystal that, due to its optical properties, has been found useful in many different areas of materials science research, including electro-optics, piezoelectric, and electronic applications. Researchers have now, for the first time, succeeded in producing large KNbO3 crystals with uniform flat shape, and c-axis texture, which makes the crystals useful for practical electro-optic applications. By using MXenes as precursor materials to grow ferroelectric crystals, their 2D nature is inherited by the ferroelectric crystals.

Feb 25th, 2019

Smart droplets clean and repair surfaces

nanoparticles_on_surfaceResearchers report a fluid-driven nanoparticle transportation clean-and-repair approach that reveals a novel self-healing system that conserves matter, behaves autonomously, and is implemented easily. Debris resting on a substrate is relocated, in one step, from undamaged to damaged regions of the substrate, using functional droplets that recognize and transport the nanoparticles. This simultaneous clean-and-repair approach reveals a novel self-healing system that conserves matter, behaves autonomously, and is implemented easily.

Feb 19th, 2019

Large-scale synthesis of metal nanoclusters with thermal shocks

nanoclusterResearchers report significant advances in developing a high-temperature, fast nanomanufacturing technique for the large-scale production of ultra small metal nanoclusters decorated in a graphene host matrix. The size and morphology of the metal nanoclusters can be controlled by varying the reaction temperature and the mass loading of metal salt in the graphene aerosol nanoreactors. This one-step continuous aerosol-based thermal shock technique offers considerable potential for the manufacturing of well-dispersed and uniform nanoclusters stabilized within a host matrix.

Feb 4th, 2019