Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 25 - 32 of 489 in category Fabrication Technologies and Devices (newest first):

 

Taking ice lithography to the next level

nanostructureResearchers have discovered that ices of simple organic molecules such as alcohols and nonane (main component of diesel) can be nanopatterned by a focused electron beam. The entire 3D lithography process takes place in a single vacuum instrument and avoids exposing users to chemicals and the need for cleanrooms. With organic ice resist (OIR) technology, nanolithography can be made accessible to more scientists. The short-term implication of this work is to provide researchers with a new nanoscale 3D printing technology. The long-term implications might have a revolutionary impact on semiconductor production and computing.

Dec 14th, 2017

Wearable health monitoring with stretchable nanogenerators

stretchable_piezoelectricsSo far, most of the developed self-powered piezoelectric devices are rigid or have limited lateral stretchability and could not be used to harvest energy from lateral strain, which greatly limits their applications on large strain deformation. In new work, researchers have successfully fabricated a piezoelectric nanocomposite device with good transparency, high stretchability, and self-powered sensing characteristics. Attached to the human body, it can harvest biomechanical energy and monitor physiological signals.

Dec 4th, 2017

Facile fabrication of dual nanopatterns with block copolymer lithography

nanolithographyBlock copolymer lithography is a cost-effective, parallel, and scalable nanolithography for the densely packed periodic arrays of nanoscale features, whose typical dimension scale is beyond the resolution limit of conventional photolithography. The directed self-assembly of block copolymers is one of the most promising techniques to enable the continued miniaturization of integrated circuits due to low cost, high speed, and simplicity of the process. Researchers have now designed for a novel block copolymer capable of easily changing its nanodomains at selective area and finally succeeded in development of dual nanopatterns.

Nov 27th, 2017

Designing lubricant-infused surfaces with the help of predictive models

condensationLiquid-impregnated coating technologies involve nanoscale texturing of a surface, which is then coated with a - usually lubricating - liquid. A lubricant infused surface is comprised of a textured solid surface into which a lubricating fluid is spontaneously wicked. Lubricant infused surfaces can exhibit excellent fluid repellency if designed properly. Scientists now have developed a model to determine which lubricant infused surfaces will work and which will fail based on material properties.

Nov 23rd, 2017

Nanotechnology materials inspired by nature

The remarkable properties of some natural materials have motivated many researchers to synthesize biomimetic nanocomposites and other nanostructured materials that attempt to reproduce Nature's achievements. Recent research has indicated that the amplification of natural materials' mechanical properties far beyond those of the components that comprise them originates mainly from: 1) a hierarchical micro-/nanoscale architecture and 2) abundant effective interface interactions. A new progress report provides insight into the development of bio-inspired structural materials.

Nov 10th, 2017

Modular 'Lego' electronics

nanofabricationResearchers demonstrate a novel assembly technique for transforming traditional state-of-the-art complementary metal oxide semiconductor (CMOS) based integrated circuits (IC) and other electronic components into LEGO-like modules by providing unique geometrical identity to each module; and assembling these 'LEGO IC' without the need for bonding or soldering but with the highest yield, accuracy and throughput required to maintain a high system performance.

Oct 25th, 2017

Acoustic microstreaming - using sound waves for microfluidic applications (w/video)

microfluidicsPrecise and reproducible manipulation of synthetic and biological microscale objects in complex environments is essential for many practical biochip and microfluidic applications. A new technique that offers simple, non-specific and long-lasting operation has been developed in form of an ultrasound-based method to guide microparticles in an autonomous and reproducible fashion, along with engineered topographical features - something like an automated highway system for microparticles.

Oct 20th, 2017

Graphene origami - folding with 'colors'

origami_patternJust like traditional paper origami that results in complicated 3D structures from 2D paper, graphene origami allows the design and fabrication of carbon nanostructures that are not naturally existing but of desirable properties. In a new report, researchers describe how p-type and n-type doping of 2D sheets like graphene in selected areas could be exploited as two 'colors' to guide the sheets into preferred folded shapes where complementarily doped areas maximize their mutual overlap.

Oct 6th, 2017