Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 17 - 24 of 534 in category Fabrication Technologies and Devices (newest first):


3D Bioprinting 101: Making bioprinting more accessible

bioprintingRecent developments in hydrogel chemistries, reinforcement approaches, and crosslinking methods have expanded the applications of 3D bioprinting to pharmaceutics, regenerative medicine, and biomedical devices. A multitude of 3D bioprinting techniques have been developed, but among these different approaches, extrusion-based 3D bioprinting has become a popular technique as it is easy to optimize and all its constituents are economical in price. A recent review elucidates the nuances of 3D bioprinting in a step-by-step guideline format, from its basics to more advanced levels.

Apr 10th, 2020

Manipulating noble metal aerogels by reductant chemistry

aerogelOne of the key issues that is holding back widespread applications of noble metal aerogels is a lack of understanding of the underlying structure-performance correlations. Presumably, this is caused by an insufficient understanding of the sol-gel process that limits manipulating versatile parameters, such as ligament sizes, compositions, and spatial element distributions. Recently published findings not only take a big step towards the detailed understanding of reductant chemistry and gelation mechanisms, manipulating the microstructures, and enriching the compositions of NMAs, but also open a new dimension for devising high-performance electrocatalysts by taking advantage of the ligand effects.

Mar 30th, 2020

Freeze-thaw made noble metal aerogels: Clean and hierarchical materials for photoelectrocatalysis

aerogel-fabricationNoble metal aerogels are widely investigated for electrocatalysis applications due to their large specific surface areas and the high catalytic activity of noble metals. However, their fabrication methods are cumbersome. Now though, researchers have developed a freeze-thaw method capable of preparing various hierarchically structured noble metal gels within only one day directly from dilute solutions without extra additives. The method fits various noble metals, and multi-scale structures can be obtained across nanometer and micrometer scales.

Mar 26th, 2020

Bioprinting techniques advance from shape to function

3DprintingBiofabrication is a revolutionizing toolkit for regenerative medicine that allows cells and other biomaterials to be precisely combined and patterned into three-dimensional (3D) constructs through automated, cell-friendly fabrication methods. With rapid advanced in 3D-printing hardware on one hand and bioink materials on the other, biofabrication techniques have gained significant momentum and provide a powerful approach to tackle major hurdles in the generation of engineered living tissues. While 3D bioprinting is still in its early stages, the remarkable leap it has made in recent years points to the eventual reality of lab-grown, functional organs.

Mar 25th, 2020

Flexible electronics made with wood-based nanotechnology

printed-electronicsResearchers have developed a method to produce a wood-derived, fully bio-based, and environmentally friendly flexible electronic circuit. They tailored the wood nanostructure to create a wood film with high transparency, flexibility, and strong mechanical properties. This material compares favorably with previously published two-dimensional cellulose-based materials developed for electronics or structural applications. This flexible circuit highlights the fact that wood can be used as a feedstock, with the potential to displace petroleum-based material for high-value products.

Mar 12th, 2020

3D-printing of perovskite nanostructures

nanowireOrganic-inorganic metal halide perovskites have emerged as a promising optoelectronic material with exceptional structure and property tunability. This new generation of functional materials possess excellent properties such as large optical absorption, long carrier diffusion length, high carrier mobility, and low-cost solution production process. Fabrication methods based on inkjet printing emerged for patterning such perovskite micro- and nanostructures. However, these patterning techniques for perovskites are still limited to in-plane fabrication and alignment. To overcome this limitation, researchers have developed a method to print perovskite nanostructures in three dimensions.

Feb 11th, 2020

Bubble- and convection-assisted trapping significantly speed up nanotweezers

nanotweezerPlasmonic 'nanotweezers' are structures made of noble metals that concentrate and absorb light, resulting in 'plasmonic hotspots' that make it possible to manipulate nanoscale objects suspended in a fluid. Trapping or sensing of nanoparticles using nanotweezers suffers from an intrinsic problem of low throughput as the particle delivery process is often diffusion-limited. Researhers have developed bubble- and convection-assisted trapping techniques that overcome the diffusion-limited trapping in nanoaperture tweezers and enable a reduction of 1-2 orders of magnitude in particle-trapping time compared to that of a diffusion-limited trap.

Dec 23rd, 2019

Biocompatible hydrogel printing for soft robotic systems made easy

3D-printingResearchers have developed a facile and versatile strategy to directly print hydrogels into biomimetic soft robots. Hydrogel materials possess intrinsic softness and they also exhibit other favorable properties that make them a perfect fabrication material for biomimetic soft robots: stretchability, biocompatibility, permeability, and stimuli-adaptability. The team harnesses biocompatible alginate as a rheological modifier to manufacture 3D freeform architectures of both chemically and physically cross-linked hydrogels using the direct-inkwrite printing.

Dec 18th, 2019