Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 44 in category All (newest first):


Single molecule studies of quantum dot - dye energy transfer

quantum-dotsResearchers report single molecule studies of energy transfer using a quantum dot donor with an organic dye acceptor. They demonstrate that suppression of the blinking of the QD donor minimizes the loss of energy, which is achieved by a simple surface treatment method.

Apr 10th, 2023

Type II 'giant' quantum dots have record breaking lifetimes

quantum-dotsResearchers achieved a milestone in the synthesis of multifunctional photonic nanomaterials. They reported the synthesis of semiconductor 'giant' core-shell CdZnSe/CdS quantum dots with record breaking emissive lifetimes. Furthermore, the lifetimes can be tuned by making a simple alteration to the material's internal structure. These new particles have great efficacy for fundamental biological discovery as they emit at red wavelengths, which minimizes scattering, while the long lifetimes allow for biological imaging to be performed with less background noise.

Dec 2nd, 2022

MXene quantum dots as promising material for immunoengineering

mxene-quantum-dotsResearchers have have reported the synthesis process and biomedical applications of a novel nanomaterial for in vivo treatment of vasculopathy - a general term used to describe any disease affecting blood vessels. Through their innovative approach using rational design and synthesis strategies, the researchers developed intrinsically immunomodulatory and anti-inflammatory tantalum carbide MXene quantum dots. The team is confident that this new nanomaterial could reduce or even avoid the need for anti-rejection drugs for heart transplant patients.

May 9th, 2022

Intracellular activation of RNA interference upon DNA-driven organization of quantum dot assemblies

quantum-dot-assembliesIn addition to the plethora of functions such as storage of genetic information and regulation of its expression, DNA and RNA are also highly programmable biomaterials. DNA can be utilized to design short complementary sequences to be used as the linkers which bring together and organize other biological and inorganic materials. Quantum dots are one such inorganic candidate. Researchers now utilized DNA for the precise assembly of QDs into larger three-dimensional scaffolds.

Aug 18th, 2021

Delivering semiconductor quantum dots into live cells

quantum-dotsResearchers achieved a milestone in exploring biology using nanotechnology utilizing single-particle tracking to investigate the interaction between human T cells and individual fluorescent nanoparticles of semiconductor quantum dots (QDs). The researchers were able to deliver QDs into the cytosol of live T cells by decorating the nanoparticles with a unique cell-penetrating peptide. The study paves the way for improving drug delivery and immunotherapy using novel nanocarriers.

Mar 12th, 2021

Core/shell nanoparticles as efficient reducing agents

quantum-dot-modelGenerally it is believed that core quantum dots (QDs) are good reducing agents and are used for that purpose in solar hydrogen generation and various organic transformations. However, core QDs are very unstable. Core/shell dots are more robust, but the shell minimizes redox activity. Researchers now demonstrate that this isn't perfectly true. In fact, they found that certain core/shell materials are a better reducing agent than the core alone. Most importantly, core/shell QDs are substantially more robust than the core alone.

Nov 13th, 2020