Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 1 - 8 of 122 in category Green Nanotechnology (newest first):

 

Metal-organic frameworks as high-performance water desalination membranes

desalinationReverse osmosis (RO) is one of the most effective desalination technologies for producing freshwater from seawater. The reverse osmosis membrane water reclamation processes is very energy intensive - not exactly an advantage given the rising cost of energy and the negative climate impact of fossil fuels. In a new study, researchers found that metal-organic frameworks (MOF) allow higher water flux compared to other 2D materials while rejecting almost 100% of unwanted ions.

Dec 11th, 2019

Transforming the greenhouse gas carbon dioxide into graphene

grapheneResearchers have produced graphene by molten carbonate electrolytic splitting of CO2 to a nano-thin carbon product (carbon nanoplatelets) comprised of 25 to 125 graphene layers, and subsequent electrochemical exfoliation of the nanoplatelets to graphene in a carbonate soluble aqueous solution. The sole products of the carbon dioxide electrolysis are straightforward: high yield carbon nanoplatelets and oxygen. The carbon nanoplatelets provide a thinner starting point than a conventional graphite reactant to facilitate electrochemical exfoliation.

Dec 2nd, 2019

'Diamonds from the sky' chemistry converts greenhouse gas into valuable nanocarbon materials

nanoonionsCarbon nano-onions (CNOs), a less studied morphology of carbon nanomaterials, are exotic structures with extraordinary properties and numerous applications. These applications have been largely ignored due to their high synthesis cost. Researchers now have produced inexpensive, stable carbon-nano onions directly from carbon dioxide. The carbon dioxide reactant replaces nano-diamonds as the reactant to form the nano-onions. The source of CO2 to produce these CNOs can be the consumption of industrial flue gas or CO2 directly captured from the air.

Jul 19th, 2019

Turning agricultural biowaste into high-value 3D-printing materials

sensorBagasse is a waste plant matter obtained by food industry processes with major potential for several high-value products. An innovative idea of utilizing bagasse is for production of nanocellulose and testing this for wound dressing devices, manufactured by 3D printing. The next step in the development of wound dressings is the personalized aspect of the biomaterials, i.e. wound dressings that are structured and composed of constituents specially selected for a specific wound and wound treatment. Furthermore, sensors could be integrated into wound dressings and thus monitor various aspects of wound development, e.g. moisture and exudates in chronic wounds.

Jun 3rd, 2019

Nanotechnology for the preservation of cultural heritage

stone_cherubResearchers a new strategy for designing Pickering emulsion based on halloysite nanotubes and exploring chitosan and pectin as thickener additives for the development of cleaning and preservation applications for cultural heritage. This novel and facile strategy to prepare hydrogel containing oil-in-water stable emulsion offers an alternative route to prepare formulations with high performance and based on sustainable materials for the controlled cleaning and preservation of stone-based artworks.

May 8th, 2019

Estimating the occurrence of nanomaterials in the environment

nanomaterialsTo perform a risk assessment of nanomaterials in the environment, information on the exposure, i.e. the amounts that are present in the environment, is essential. In contrast to many other known pollutants, the concentrations of nanomaterials in environmental systems cannot be measured directly. In this situation, exposure modelling is a solution to estimate the environmental exposure with synthetic nanomaterials. In order to predict the amount of a nanomaterial in a certain environmental compartment (environmental exposure) present in a certain area, two basic types of models are required - material flow analysis and environmental behaviour modelling.

Apr 23rd, 2019

Eggshell membranes from bio waste could be harvesters for green energy

eggshellIn new work, researchers explore inexpensive, biodegradable and daily-waste eggshell membrane as a novel bio-piezoelectric material for harvesting green energy. The uniqueness of our work lies in the novelty of directly utilizing natural eggshell membranes as efficient piezoelectric material. This simple, innovative approach could provide huge benefits for research in future energy science, especially with regard to in vivo biomedical applications.

Jun 12th, 2018

All-natural nanobiotechnology instead of synthetic agrochemicals

nanoemulsionWidespread use of synthetic agrochemicals in crop protection has led to serious concerns of environmental contamination and increased resistance in plant-based pathogenic microbes. In an effort to develop bio-based and non-synthetic alternatives, nanobiotechnology researchers are looking to plants that possess natural antimicrobial properties. In new work, researchers show that nanoscale thymol's antibacterial and antifungal properties not only prevent plant disease but that it also enhances plant growth.

May 4th, 2018