Showing Spotlights 17 - 24 of 132 in category All (newest first):
In new work, researchers explore inexpensive, biodegradable and daily-waste eggshell membrane as a novel bio-piezoelectric material for harvesting green energy. The uniqueness of our work lies in the novelty of directly utilizing natural eggshell membranes as efficient piezoelectric material. This simple, innovative approach could provide huge benefits for research in future energy science, especially with regard to in vivo biomedical applications.
Jun 12th, 2018
Widespread use of synthetic agrochemicals in crop protection has led to serious concerns of environmental contamination and increased resistance in plant-based pathogenic microbes. In an effort to develop bio-based and non-synthetic alternatives, nanobiotechnology researchers are looking to plants that possess natural antimicrobial properties. In new work, researchers show that nanoscale thymol's antibacterial and antifungal properties not only prevent plant disease but that it also enhances plant growth.
May 4th, 2018
One of the main challenges for energy efficient technologies is to lower their cost by making cheap energy-efficient materials and devices by preferably using green manufacturing technologies. For example, commercial infrared-blocking windows, both passive and active, are simply too expensive (most of these IR-blocking windows contain an expensive silver coating) and they are not used in the majority of our homes. One approach to this problem involves creating passive infrared-blocking glasses using plasmonic nanocrystals. Researchers have demonstrated that nanocrystals of relatively inexpensive plasmonic materials show an overall good performance as IR-blocking elements.
Apr 27th, 2018
Carbon nanomaterials, including graphene-based materials, are widely gaining popularity in practical applications of nanomanufacturing. As a result, it becomes more and more likely that the unwanted introduction of such materials into the environment may occur. In particular, aqueous habitats might be severely affected by any accidental carbon nanomaterials exposure. Researching these potential environmental toxicity effects, scientists have found that kaolin, a cheap and abundant clay, can act as a powerful antidote to remediate the toxic effects of graphene oxide.
Apr 25th, 2018
Turning atmospheric carbon dioxide (CO2) into valuable products seems like a great idea to help remove this greenhouse gas to mitigate climate change. Using a process of molten carbonate electrolytic transformation of CO2 to carbon nanotubes, researchers have now demonstrated 'carbon nanotube wool'. These are the first carbon nanotubes that can be directly woven into a cloth as they are of macroscopic length (over 1mm) and are cheap to produce. The sole reactant to produce the carbon nanotube wools is carbon dioxide. This transforms CO2 from a pollutant into a useful, valuable resource.
Jul 18th, 2017
Metal-organic frameworks (MOFs) are well-ordered, lattice-like crystals. The nodes of the lattices are metals, which are connected by organic molecules. The most impressive features of MOFs are their extremely high surface area, high porosity, and tunable pore sizes, which are remarkable advantages over other porous materials (e.g., zeolites and carbons). With their special structure and large surface area, MOFs open up new opportunities for alternative systems for gas and energy storage (e.g. carbon dioxide and hydrogen storage), in catalysis, chemical sensing, as nanoreactors, and in drug delivery, making them hugely interesting for both university research and industry.
Jun 15th, 2017
In two new studies, researchers show that cement plants can have their carbon dioxide exhaust eliminated while co-producing carbon nanotubes. They demonstrate that with their C2CNT (carbon dioxide into carbon nanotubes) process, a wide portfolio of tailored carbon nanotubes, such as those with special shapes or conductivity can be made. C2CNT is a straightforward process that transforms CO2 to carbon nanotubes by molten electrolysis with inexpensive (nickel and steel) electrodes and low voltage. This synthesis consumes only CO2 and electricity, and is constrained only by the cost of electricity.
Mar 21st, 2017
The serious threat of particulate matter (PM) air pollution to human health spurs development of advanced filter technologies. Particular efforts have been made in designing air filters with both high filtration efficiency and low airflow resistance by utilizing carbon nanotubes and electrospun polymer and inorganic nanofibers. In new work, scientists explored the performance of electrospun silk nanofiber membranes as air filters, which showed both of lightweight and high efficient features.
Jul 13th, 2016