Open menu

Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 41 - 48 of 2113 in category (newest first):

 

On-demand liquid release from a sponge-like coating

nanofluidicsA novel approach to deliver liquids from a solid coating is both location- and time- controlled. The sponge-like coating can repeatedly absorb liquids and release them again. The type of release, either droplets or film, can be initiated by a short exposure with UV light. The uptake is accelerated by exposure with blue light. The principle of this coating is based on a photoresponsive liquid-filled smectic crystal network (LCN).

Posted: Feb 6th, 2018

Kirigami nanofluidic devices

kirigamiRecent research in nanofluidics has adopted reconstructed layered two-dimensional (2D) sheets (such as graphene oxide or clay) as a promising material platform for nanofluidics. These membranes contain a high volume fraction of interconnected 2D nanochannels. This nanochannel fabrication method is straightforward and scalable, and does not rely on lithography or etching. The researchers termed this process, which opens up a range of new opportunities for manipulating ionic transport by tailoring the shape of the films, kirigami nanofluidics.

Posted: Feb 2nd, 2018

3D printing of living responsive devices

3D-printingResearchers have demonstrated a new paradigm in 3D-printing by using genetically programmed living cells as active components to print living materials and devices. The living cells are engineered to light up in response to a variety of stimuli. When mixed with a slurry of hydrogel and nutrients, the cells can be printed, layer by layer, to form three-dimensional, interactive structures and devices. These printed large-scale high-resolution living materials accurately respond to signaling chemicals in a programmed manners.

Posted: Jan 31st, 2018

Nanomachines in living systems - on route to microcyborgs

nanobiotechnologyFrom interaction with bacteria, propulsion based on cells, in vivo medical applications to even intracellular applications, the rapidly expanding development of micro- and nanomachines with sizes comparable to or even smaller than mammalian cells, has led this field to advance from understanding of basic motion mechanisms to applications in living biosystems. A recent review highlights the recent efforts for and toward application of micro/nanomachines in living biosystems, including microorganisms, biological cells, and human body. Applications of micro- and nanomachines in living biosystems are reviewed from two aspects: their interaction with other microscopic organisms or biological units, and the efforts toward their application in the human body.

Posted: Jan 30th, 2018

Helical nanopropellers to measure local viscosity in a fluid

nanomotorResearchers find magnetic helical nanomachines that mimic the swimming characteristics of E. coli bacteria to be particularly promising because of their extremely small size and their capability of navigating in various biological fluids like human blood. New work extends the possibility of using helical nanomachines as a tool to measure the localized mechanical properties of a heterogeneous environment that is ubiquitous in biological systems. This technique can be useful to gain valuable insights into the physiological changes of a cell in response to a disease or a drug, leading to better therapeutics.

Posted: Jan 26th, 2018

Sculpting liquids

Countless commercial and industrial products are routinely produced by manufacturing processes where solid parts are molded through injecting molten polymer into a cast and removing the finished shape once cooled. This process is well understood for solid materials. If the characteristics and properties of a liquid are of interest, e.g., ion transport or mobility, the ability to structure liquids into complex shapes becomes highly desirable. It would open a wide range of potential applications in areas such as all-liquid reaction vessels, energy storage materials, all-liquid electronic devices, and microfluidic devices. Researchers now have developed a very simple route to structure liquids by all-liquid molding.

Posted: Jan 22nd, 2018

Power up your T-shirt with print designs

electronic_t-shirtInspired by the designs printed on T-shirts, researchers recently reported a new class of wearable power sources. To explore the feasibility of power sources directly printed on cotton T-shirts, which look like letters or symbols, they chose electric double layer supercapacitors based on activated carbon materials as a model electrochemical system. These T-shirts look and behave like a normal T-shirt but feature printed supercapacitors in the shape of letters and symbols.

Posted: Jan 19th, 2018

Drastic phase changes in topologically-engineered planar absorbers improve sensitivity of optical sensors

sensorPlasmonic metasurfaces can be designed to achieve the singular-phase condition, yet this typically requires complex electromagnetic design and low-throughput fabrication techniques such as electron beam lithography. In a new work, researchers have developed a simple and robust planar singular-phase sensing platform for remote temperature detection, which does not require nano-patterning and exhibits singular-phase behavior due to the excitation of topologically-protected Tamm surface states.

Posted: Jan 18th, 2018