Nanotechnology Spotlight – Latest Articles

RSS Subscribe to our Nanotechnology Spotlight feed

Showing Spotlights 9 - 16 of 287 in category All (newest first):


Interface engineering enables tunable topological transitions in biaxial crystals

field-distributionsPolaritons in biaxial crystals offer a promising route to manipulate nanoscale light-matter interactions. The dynamic modulation of their dispersion is of great significance for future integrated nano-optics but remains challenging. Researchers theoretically demonstrate and experimentally verify such tailored polaritons at the interface of heterostructures. The interface engineering may shed new light on programmable polaritonics, energy transfer, and neuromorphic photonics

Apr 22nd, 2022

Growing wafer-scale 2D materials

waferThe huge variety of vdW layered 2D materials provides a large potential for advanced 2D nanoelectronics. However, for scalable applications, all vdW layered 2D materials face a common challenge: transitioning from micrometer-scale 2D flakes to wafer-scale. This is necessary for scaling up 2D vdW materials application in the high-end semiconductor industry. A new review describes the structures, properties, wafer-scale growth methods, and applications of a number of representative vdW layered 2D materials.

Mar 8th, 2022

On route to 3D printing with atomic resolution (w/video)

stacked-grapheneWhen two or more 2D materials are placed on top of each other their properties change and a material with novel hybrid properties emerges. These materials are called van der Waals heterostructures. By stacking free-standing membranes under observation in an electron microscope, researchers have demonstrated almost arbitrary 3D structures by stacking atomically thin materials, similar to a 3D printing process, where each atomic layer can be chosen from the vast library of available 2D materials.

Feb 7th, 2022

Improving optical-tweezer technology with graphene

graphene-based-tweezersBy replacing gold film with graphene, researchers have improved the performance of opto-thermoelectric tweezers. These new graphene-based opto-thermoelectric tweezers benefits from a much broader working wavelength range and a larger trapping area. They extend the working wavelength from visible band to the infrared and far-infrared bands, which are less harmful to biological samples. Owing to the ultrahigh thermal conductivity of graphene, this technology can achieve large-area particle trapping or concentration.

Jan 28th, 2022

Tracing nanoscale variations of optical properties of 2D heterostructures with multidimensional optical imaging

nano-islandA novel multidimensional characterization approach that combines several characterization techniques, allowing to get materials properties of the heterostructure with (almost) nanometer resolution. The method combines several microscopy tools into a multidimensional imaging tool that allows the inspection of materials' optical properties at a resolution much higher than with regular optical microscopy. At the core of this method are nanometer-resolution optical maps that we obtained with scattering Scanning Near-field Optical Microscopy (sSNOM).

Jan 22nd, 2022

Large-scale synthesis of graphene and other 2D materials

grapheneThis review summarizes the current industrial graphene synthetic and analytical methods, as well as recent academic advancements in larger-scale or sustainable synthesis of graphene. Specific emphasis is placed on recent research in the use of flash Joule heating as a rapid, efficient, and scalable method to produce graphene and other 2D nanomaterials. Challenges and opportunities in the larger-scale synthesis of graphene and a perspective on the broader use of flash Joule heating for larger-scale 2D materials synthesis are discussed.

Jan 19th, 2022

Machine Learning assisted computational discovery of two-dimensional energy storage materials

2D-electrode-materialResearchers developed a holistic approach, which predicts both Li-ion storage and supercapacitive properties and hence identifies various important electrode materials that are common to both devices, may pave the way for next-generation energy storage systems. By leveraging the big-data generated by the computational pipeline, the team trains crystal graph-based machine learning models and demonstrates how this data-driven model could be helpful for the rapid discovery of potential materials from other databases.

Jan 13th, 2022

From aptamer-graphene interaction understanding to biosensor performance improvements

biosensorThe use of graphene-based field-effect transistors is one of the most powerful biosensing units for the detection of numerous biological and biochemical analytes. In new work, researchers propose a microscopic model of mycotoxin detection via graphene-based aptasensors enabling improvement of biosensor sensitivity, which is based on the investigation of aptamer interaction mechanism with graphene channel during binding of targeted molecules. The limit of detection is estimated at only 1 pM and time response in just 10 seconds, making the developed platform a high-performance device.

Dec 22nd, 2021