Nanotechnology Databases

Comprehensive databases for nanomaterials, events, products,
companies, research labs, degree programs and publications

Nanotechnology Research - Universities


Showing results 71 - 79 of 79 for universities in California:

The Center for Spintronics and Quantum Computation is part of the California NanoSystems Institute (CNSI) based at the University of California, Santa Barbara. This multidisciplinary research center provides a focus for rapidly expanding research, education and training in spin-based electronics and quantum computation, with an emphasis on the potential realization in coherent electronic, magnetic and photonic nanostructures.
Mission: Using microfluidic technologies, electrokinetics, and spectroscopy to develop tools for chemical detection, cellular discovery, and electronics cooling applications.
The research interest of Kaustav Banerjee's group include nanometer scale issues in CMOS VLSI as well as circuits and systems issues in emerging nanoelectronics. He is currently involved in exploring the physics, technology, and applications of carbon nanomaterials for next-generation green electronics.
The UCSB Nanofabrication Facility offers expertise in compound semiconductor-based device fabrication providing a full range of processes to the scientific and research communities.
The Cleland group pursues research in two distinct areas: 1) Quantum-limited behavior of electronic and mechanical systems, and 2) Developing tools for biophysical and biomedical applications.
The nanopore project at UC Santa Cruz has pioneered the use of ion channels for the analysis of single RNA and DNA molecules.
The center's mission is the development of optofluidic devices and their application to single particle studies in molecular biology and biomedical diagnostics.
The group works on the design, synthesis, characterization and evaluation of lipid- and/or polymer-based nanostructured biomaterials. One specific interest lies in developing nanomaterials for healthcare and other medical applications, for example, drug delivery to improve or enable treatments of human diseases. In addition, we also seek to understand the fundamental sciences underlying the arenas of nanomedicine.
The Madhukar Group's research has revolved around electronic response (electrical and optical) of synthesized materials and structures in reduced (two, one, and zero) dimensions and their potential use in electronic and optoelectronic devices for information sensing, processing, imaging and computing technologies. The emphasis for some time has been on three dimensionally confined (i.e. zero dimensional) nanostructures called quantum dots and the scope in recent years has expanded to include biochemical materials (peptides, proteins) and hybrid semiconductor-biomolecular nanostructures for biomedical applications, particularly neural prostheses.
left arrowBack to Nanotechnology Links Directory