Wie Metallcluster wachsen

(Nanowerk News) Erst der Kern, dann die Schale: Chemikerinnen und Chemiker aus Marburg und Karlsruhe haben den schrittweisen Aufbau von Metallcluster-Verbindungen verfolgt, das sind kleinste Ausschnitte von Metallen in molekularer Form. Das Team untersuchte Cluster, die ein Übergangsmetall-Atom enthalten, das sich in einer Hülle aus Halbmetall-Atomen befindet. Diese Hülle formt sich schrittweise um das innere Atom, fanden die Wissenschaftlerinnen und Wissenschaftler heraus – und schließen damit aus, dass sich das zentrale Atom erst nachträglich einnistet. Das Wissenschaftsmagazin Nature Communications berichtet in seiner aktuellen Ausgabe (25. Januar 2016) über die Ergebnisse ("Understanding of Multimetallic Cluster Growth").
Clusterwachstum
Schritt für Schritt zur vollständigen Hülle: Das Team um die Marburger Chemieprofessorin Dr. Stefanie Dehnen verfolgte die Bildung eines Metallclusters von den atomaren Bestandteilen bis zur fertigen Verbindung. (Abbildung: AG Dehnen, Philipps-Universität Marburg)
Um chemische Verbindungen gezielt synthetisieren zu können, muss man die Mechanismen kennen, die für ihre Bildung verantwortlich sind. „Rein anorganische Verbindungen sind in dieser Hinsicht weitgehend eine ‚black box‘“, erklärt die Chemieprofessorin Dr. Stefanie Dehnen von der Philipps-Universität, Korrespondenzautorin der aktuellen Studie. „Das gilt insbesondere für die Bildung vielkerniger Metallkomplexe, so genannter Cluster.“ Denn die Prozesse beim Umbau metallhaltiger Cluster gehen so schnell vonstatten, dass es normalerweise nicht möglich ist, diese Vorgänge und die Zwischenprodukte zu beobachten. Marburg)
Würde man die beteiligten Mechanismen vollständig kennen, so ließen sich für technische Anwendungen Metall-Cluster maßschneidern, die fein justierbare opto-elektronische und magnetische Eigenschaften aufweisen. „Aber schon die allerersten Schritte sind noch weitgehend unerforscht und lassen sich nur aufklären, indem man chemische Synthese, Messung und computerchemischer Modellierung miteinander kombiniert“, legt Mitverfasser Dr. Florian Weigend vom Karlsruher Institut für Technologie dar, der zweite Korrespondenzautor des Aufsatzes. Marburg)
Die Wissenschaftlerinnen und Wissenschaftler verfolgten die Bildung eines vielkernigen Metallclusters, indem sie die aufeinanderfolgenden Kristallstrukturen beobachteten. Hierfür synthetisierte die Gruppe eine Serie von Clustern, die aus den Halbmetallen Germanium und Arsen bestehen und die offenbar in definierten Schritten größer werden. Bei den größten Vertretern befindet sich ein Atom des Übergangsmetalls Tantal im Zentrum der Käfigmoleküle. Marburg)
Die Befunde legen nahe, dass das Übergangsmetall bei der Clusterbildung sehr früh ins Spiel kommt. „Es kann als ein Art Katalysator angesehen werden, der das Knüpfen und Lösen von Bindungen anstößt, wenn die beobachteten Umformungen vonstattengehen“, führt das Forschungsteam aus. Alles in allem zeigen die Befunde, dass sich das Übergangsmetall nicht in eine vorweg entstandene Clusterhülle einfügt, sondern dass sich die Schale des Clusters schrittweise um das Atom im Zentrum herum bildet. Marburg)
In Verbindung mit quantenchemischen Berechnungen unter Weigends Leitung ergibt sich erstmals ein weitgehend quantitatives Gesamtbild. „Die Ergebnisse lassen sich für eine ganze Familie metallischer Clusterverbindungen verallgemeinern“, schreiben die Autorinnen und Autoren. Marburg)
Neben Dehnen und Weigend sowie dem Doktoranden Stefan Mitzinger sind die Humboldt-Stipendiatin Dr. Lies Broeckaert und Professor Dr. Werner Massa an der aktuellen Veröffentlichung beteiligt. Die zugrunde liegenden Forschungsarbeiten wurden durch die Alexander-von Humboldt-Stiftung, die Friedrich-Ebert-Stiftung sowie die Deutsche Forschungsgemeinschaft finanziell unterstützt.
Source: Philipps-Universität Marburg