New type of buckypaper could pave the way for more protective materials and efficient batteries

(Nanowerk News) Researchers at the Masdar Institute of Science and Technology have developed a novel type of “buckypaper” – a thin film composed of carbon nanotubes – that has better thermal and electrical properties than most types of buckypaper previously developed. Researchers believe the innovative buckypaper could be used to create ultra-lightweight composite materials for numerous aerospace and energy applications, including advanced lightning strike protection on airplanes and more powerful lithium-ion batteries.
Masdar Institute’s Associate Professors of Mechanical and Materials Engineering Dr. Rashid Abu Al-Rub and Dr. Amal Al Ghaferi, along with Post-Doctoral Researcher Dr. Hammad Younes, developed the buckypaper with carbon nanostructures provided by global security, aerospace, and information technology company Lockheed Martin.
A paper on their research was published earlier this year in the journal Diamond and Related Materials ("Processing and property investigation of high-density carbon nanostructured papers with superior conductive and mechanical properties"). The paper was co-authored by Masdar Institute PhD student Mahfuzur Rahman and Mechanical Engineering MSc alumni Ahmed Dalaq.
The black, powdery flakes provided by Lockheed Martin’s Applied NanoStructured Solutions (ANS) contain hundreds of carbon nanotubes, which are one-atom thick sheets of graphene rolled into a tube that have extraordinary mechanical, electrical and thermal properties. Lockheed Martin’s carbon nanostructures are unique because the carbon nanotubes within each flake are all properly aligned, making them good conductors of heat and electricity.
“Lockheed Martin’s carbon nanostructures have many potential applications, but in its powdery form, it cannot be used. It has to be fabricated in a way that keeps the unique properties of the carbon nanotube,” explained Dr. Al Ghaferi. “The challenge we faced was to create something useful with the carbon nanotubes without losing any of their unique properties or disturbing the alignment.”
Dr. Younes said: “Each flake is a carbon nanostructure containing many aligned carbon nanotubes. The alignment of the tubes creates a path for conductivity, much like a wire, making the nanostructure an exceptionally good conductor of electricity.”
The Masdar Institute team mixed the carbon nanotubes with a polymer and their resulting buckypaper, which successfully maintained the alignment of the carbon nanotubes, demonstrated high thermal-electrical conductivity and superior mechanical properties.
“We have a secret recipe for self-aligning the carbon nanotubes within the buckypaper. This self-aligning is key in significantly enhancing the electrical, thermal and mechanical properties of our fabricated buckypapers,” explained Dr. Abu Al-Rub.
Despite their microscopic size – a carbon nanotube’s diameter is about 10,000 times smaller than a human hair – carbon nanotubes’ impact on technology has been huge. At the individual tube level, carbon nanotubes are 200 times stronger, five times more elastic, and five times more electrically conductive than steel.
Because of their extraordinary strength, thermal and electrical properties, and miniscule size, carbon nanotubes can be used in a number of applications, including ultra-thin energy storage devices, smaller and more efficient computer chips, photovoltaic solar cells, flexible electronics, cancer detection, and lightning-resistant coatings on airplanes.
Source: By Erica Solomon, Masdar Institute