Open menu

Breakthrough antimalarial drug delivery system using mesoporous silica nanoparticles

(Nanowerk News) Drug delivery systems (DDSs) control when and how much drugs are delivered to the body. Numerous DDS studies have been conducted but most have focused on treatments for cancer. New research from Kumamoto University uses a DDS to treat malaria (Scientific Reports, "Mesoporous silica nanocarriers encapsulated antimalarials with high therapeutic performance").
The existing treatment for malaria is taken orally and has three main problems: (1) most antimalarial drugs are broken down in the stomach, (2) the drugs have strong side effects, and (3) the medicine stays in the body for only a short time. These issues resulted in malaria treatments that were not particularly effective.
MCM-41 is a porous silica material with a pore size of 2-30 nm. It can incorporate drugs into its pores, which makes it a useful material for DDS applications. A research group headed by Prof. Shinya Hayami from Kumamoto University, Japan believed that MCM-41 could be used as DDS for antimalarial drugs.
A Drug Delivery System Made from the Porous Silica Material MCM-41
Kumamoto University researchers found that using MCM-41 as a drug delivery system for malaria treatment produced a highly efficient treatment in animals. Clinical trials are planned in the near future. (Image: Shinya Hayami)
To test their theory, they created a new DDS by combining the antimalarial drugs Artesunate and Quinine with MCT-41 and performed in vitro and in vivo experiments. They found:
(1) The release time of the antimalarial medicine became very long, one week or longer, which was an improvement from the standard medication time.
(2) Compared to ingesting Artesunate or Quinine, the new DDS increased treatment efficiency by 20 and 240 times respectively in animal experiments. (As defined in this study, the therapeutic efficiency is 50% of the effective dose (ED50), and is used as an index of drug strength. The smaller the value of ED50, the greater the action of the drug. In other words, if an effect is obtained with a small amount of a drug, the treatment efficiency is high.)
(3) MCM-41 itself is non-toxic and inactive. A DDS using MCM-41 is expected to have very weak side effects.
"Using this DDS for antimalarial drugs has introduced a new possibility for highly efficient malaria treatment for the first time," said Professor Shinya Hayami. "We expect that it will be put to practical use in areas where malaria treatment is still necessary. Now, we are planning to develop clinical trials for antimalarial drugs as well as new DDSs for other drugs, like anti-HIV medications."
Source: Kumamoto University
Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.
 
These articles might interest you as well: