Open menu

Nanotechnology Research Laboratories


Showing results 1 - 10 of 55 of research organizations in Switzerland:

The BIOTEX project aims at developing dedicated biochemical-sensing techniques compatible with integration into textile. The consortium includes two research institutes in the field of micro and nanotechnology.
CSEM's expertise in nanotechnology focuses on characterization, optics, microscopy, and surface engineering. The combination of these technologies with other ones such as microfluidics, microsystems, photonic optics and micro-optics makes CSEM able to integrate successfully nanotechnology to novel products.
Research in the Diederich group at ETH Zurich is structured around four central themes: Molecular recognition in chemistry and biology; Modern medicinal chemistry: molecular recognition studies with biological receptors and X-ray structure-based design of nonpeptidic enzyme inhibitors; Supramolecular nanosystems and nano-patterned surfaces; Advanced materials based on carbon-rich acetylenic molecular architecture.
The lab investigates mechanical materials properties from the nano to macro-scale using experimental, analytical, and computational techniques. Current cutting edge research within European projects and the ETH competence center on high temperature materials focuses on micro- and nano- mechanical properties of materials (instrumentation, scale effects related to microstructure and physical dimension.
eNanoMapper (ENM) proposes a computational infrastructure for toxicological data management of engineered nanomaterials based on open standards, ontologies and an interoperable design to enable a more effective, integrated approach to European research in nanotechnology.
One of the areas of research deals with nanometric positioning.
The activities of the laboratory aim at a detailed description of photo-induced processes in the molecular condensed phase (liquid, solid and proteins) and in metallic and semiconductor nanostructured materials. A central approach of the group is the visualization in 'real time' of the processes by means of ultrafast laser spectroscopy.
NANOLAB is working on various subjects in the field of silicon micro/nano-electronics with special emphasis on the technology, design and modelling of nanoscale solid-state devices (including Silicon-On-Insulator devices, few-electron devices, hybrid SET/CMOS, single electron memory, nanowires and nanotubes), Radio Frequency MEMS devices for in- and above-IC and integrated optoelectronic devices. The group is interested in exploring new materials, novel fabrication techniques, and novel device concepts for future nanoelectronic systems.
The Nanophotonics & Metrology Laboratory (NAM) at the Swiss Federal Institute of Technology Lausanne (EPFL) covers a broad spectrum, from nanophotonics to plasmonics, near-field optical microscopy to spectroscopy, from optical signal processing for sensing and telecommunications to speckle and holographic interferometry.
The group is working on nanoelectronics based on new, two-dimensional materials such as graphene and MoS2. These materials represent the ultimate limit of miniaturization in the vertical dimension and offer substantial advantages over nanotubes or nanowires.