Nanowerk

Nanotechnology Databases

Comprehensive databases for nanomaterials, events, products,
companies, research labs, degree programs and publications

Nanotechnology Research Laboratories

 

Showing results 676 - 690 of 690 for research and community organizations in USA:

 
An interdisciplinary group of scientists using the tools of nanotechnology to study biology at the smallest scale. The group's goals are to learn more about the basic functions and interactions of biological molecules and to use what they find to achieve new capabilities with biomedical implications. In pursuing this goal, they bring together aspects of physics, engineering, molecular biology, and many other disciplines.
The department conducts research on nanomaterials.
The lab's research interests are fabrication, characterization, and fundamental understanding of advanced nano/micro photonic devices with outstanding optical properties.
In 2005, the National Cancer Institute (NCI) recognized Washington University School of Medicine's contribution to nanomedicine with a five-year, $16 million grant to establish the Siteman Center of Cancer Nanotechnology Excellence (SCCNE). It is one of eight such centers funded by the NCI in the United States.
The lab's research interests are focused at the intersection organic and plasmonic nanomaterials. They aim at rational integration of organic (polymeric, biological) materials and plasmonic nanostructures to realize multifunctional materials. Organic materials with responsive and self-assembling properties combined with functional plasmonic nanostructures that exhibit unique optical properties forms a powerful materials platform for a wide variety of applications including plasmonic photovoltaics, chemical and biological sensors, adaptive materials, non- or minimally-invasive bioimging and therapy.
Ivan Avrutsky's group designs, fabricates, tests, and simulates optoelectronic devices employing waveguide gratings and nanostructured materials. They study physics of light interaction with such objects. Practical applications are mostly in the areas of optical communication and optical sensors.
This website provides information on various nanoscience and nanotechnology initiatives at Wayne State University.
The Western Institute of Nanoelectronics (WIN), a National Institute of Excellence, has been organized to build on the best interdisciplinary talents in the field of nanoelectronics in the world. WIN?s mission is to explore and develop advanced research devices, circuits and nanosystems with performance beyond conventional scaled CMOS.
The acquisition of the Large Chamber Scanning Electron Microscope (LC-SEM) has positioned WKU as the only university in North America with an instrument of this type. As envisioned, the NOVA Center will be a national focal point for nondestructive measurements and is crosscutting in the five priority research areas of the Commonwealth's New Economy Strategy. In particular, Materials and Advanced Manufacturing will be significantly impacted as a result of the Centers founding.
Research programs of the AFM Lab include mechanical properties of carbon nanotubes and photoresponse of light-activated molecules.
In BEI's seven multidisciplinary centers, scientists, engineers, and clinicians address important research challenges in several major areas of medical technology and healthcare, including bioprocessing, imaging, nanotechnology, remote diagnostics and treatment, sensing, and water quality.
Current research and education carried out in this laboratory focus upon the experimental and conceptual study of nanoscaled materials fabricated by Non-lithography process assisted with anodized aluminum oxide (AAO) template.
This research group studies condensed matter systems, often in the solid state, using first principles or ab initio methods. Topics include properties of nanostructures, especially nanowires and nanotubes.
The Mark A. Reed Group at Yale University focuses on research in semiconductor nanowires and devices, quantum electron devices, transport phenomena in semiconductor heterojunction and nanostructured systems, reduced dimensionality effects, resonant tunneling transistors and circuits, novel heterojunction devices, molecular electronics, MEMS, bioMEMS, and nanotechnology.
Quantronics Laboratory (Qlab) explores the world of mesoscopic electronics. Using superconducting electrical circuits and microwave measurement techniques, the group coaxes typically classical degrees of freedom like currents and voltages into quantum mechanical behavior. The present focus is on applications to Quantum Computation.
 
 
left arrowBack to Nanotechnology Links Directory