Nanotechnology Research Laboratories

 

Showing results 91 - 105 of 152 for research and community organizations in UK:

 
The James Watt Nanofabrication Centre is a new facility within Glasgow University centred on the Department of Electronics and Electrical Engineering. The focus is on interdisciplinary research at the nanometre scale and the JWNC brings together many different research groups working in engineering and the physical and life sciences. The Centre has comprehensive micro and nanofabrication facilities housed within 750 m2 of cleanroom space including one of the most advanced large area high resolution electron beam lithography tools in the world.
The Masters in Nanoscience and Nanotechnology teaches you the skills desired by modern industry for scientists and engineers doing research, development and production in nanoscience and nanofabrication. This multidisciplinary programme will complement your background in electronics, materials science, or physics. Prestigious Scottish Funding Council Awards are available to high calibre applicants for this programme.
The Nanoelectronics Research Centre provides a focus for diverse research activities within the University of Glasgow linked by a common interest in Nanoelectronics and Nanofabrication.
The lab carries out research in the underlying science of optical processes in semiconductor nanostructures, i.e., device-relevant science.
A dedicated laboratory offers nanotechnology services.
The network brings together well established research groups and industrial concerns in complementary fields of precision engineering and nanometrology in the UK.
The programme provides opportunities for students to develop and demonstrate knowledge, understanding, skills, qualities and other attributes in chemistry with a nanotechnology focus.
The programme provides opportunities for students to develop and demonstrate knowledge, understanding, skills, qualities and other attributes in chemistry with a nanotechnology focus.
This unique course is focused directly on this interface between the fields of electronics and nanotechnology. It covers the foundations of electronic engineering, from communications systems through to computer engineering, integrated circuit design and micro/nano fabrication. It enables you to understand the principles of electronics and nanotechnology, in particular the principles of the fabrication and design of modern microelectronic products.
Research done by participating members includes the mathematical and numerical modelling of MESFETs and HEMTs in Applied Mathematics, transport in amorphous Si and other disordered materials in Physics and Astronomy, the application of discotic liquid crystals to electronic and optical devices in the SOMS Centre, and FET and HBT modelling, terahertz interband quantum well lasers and electromagnetic field modelling of terahertz integrated waveguide structures in Electronic and Electrical Engineering.
The SOMS Centre is an interdisciplinary research centre where chemists, physicists, biologists and engineers seek to understand the science of molecular self-assembly and self-organisation, to engineer new functional exploitable materials and devices.
This unique course is focused directly on this interface between the fields of electronics and nanotechnology. It covers the foundations of electronic engineering, from communications systems through to computer engineering, integrated circuit design and micro/nano fabrication. It enables you to understand the principles of electronics and nanotechnology, in particular the principles of the fabrication and design of modern microelectronic products.
The programme starts in late September each year and is divided into three approximately equal periods. The first and second periods consist of lectures, laboratory classes, seminars and similar material. In the third period, students undertake an individually supervised project on a topic relevant to their special interests.
The current research themes of the SSRC cut across the disciplines of chemistry, physics, biology and materials science, and combine the efforts of both experimentalists and theoreticians. The overarching ambition of this work is to achieve nanoscale control, design and assembly of function.
Porous materials are omnipresent in nature: microporous materials, such as zeolite minerals, with pores of angstrom, molecular dimensions; mesoprous materials, such as cell membranes, with nanometre-sized pores; macroporous materials, such as diatom skeletons, with micron-sized pores. Synthetic analogues of such materials are prepared and studied here and find many industrial uses in for instance catalysis, water treatment, environmental clean-up, molecular separation and opto-electronics.
 
 
left arrowBack to Nanotechnology Links Directory