Open menu

Nanotechnology Research in Georgia


Showing results 1 - 12 of 12 for research and community organizations in Georgia:

This MURI project at Georgia Tech is focused on a revolutionary new paradigm for fabricating micro/nanodevices: the synergistic use of genetic engineering, biological replication, and shape-preserving chemical conversion to generate enormous numbers of identical Genetically-Engineered Micro/nanodevices (GEMs) with tailored 3-D shapes, fine (meso-to-nanoscale) features, and chemistries.
The CNCF in the School of Materials Science and Engineering, is a multi-user facility. Its mission is to provide the Georgia Tech campus with state-of-the-art tools for performing advanced research on a variety of nanoscale materials.
COPE is a premier national research and educational resource center that creates flexible organic photonic and electronic materials and devices that serve the information technology, telecommunications, energy, and defense sectors. COPE creates the opportunity for disruptive technologies by developing new materials with emergent properties and by providing new paradigms for device design and fabrication.
Since 2001 and the invention of graphene electronics the Georgia Tech epitaxial graphene research team led by Walt de Heer and its collaborators are developing the new field of epitaxial graphene electronics.
Dr. Filler's research group works at the interface of chemical engineering and materials science, emphasizing the atomic-level engineering of nanoscale semiconductors for applications in energy conversion, electronics, and photonics.
The Institute for Electronics and Nanotechnology (IEN) at Georgia Tech was established as an Interdisciplinary Research Institute (IRI) with the goals of providing a central entry point and a central organization to enable interdisciplinary E&N related training, education, and research at Georgia Tech in partnership with outside entities.
The mission of the group is to advance the science and engineering of organic and hybrid nanostructured materials and enable technological innovations for applications in communications, sensing, displays, energy efficient solid-state lighting, and power generation.
The group's research focuses on nanostructured functional materials (NanoFM), including polymer-based nanocomposites, block copolymers, polymer blends, conjugated polymers, quantum dots (rods, tetrapods, wires), magnetic nanocrystals, metallic nanocrystals, semiconductor metal oxide nanocrystals, ferroelectric nanocrystals, multiferroic nanocrystals, upconversion nanocrystals, thermoelectric nancrystals, core/shell nanocrystals, hollow nanocrystals, Janus nanocrystals, nanopores, nanotubes, hierarchically structured and assembled materials, and semiconductor organic-inorganic nanohybrids. The goal of the research is to understand the fundamentals of these nanostructured materials.
The mission of Prof. Gleb Yushin's group is to develop innovative nanotechnology-driven solutions that would facilitate a cleaner environment, decreased energy consumption, safer and healthier lives for people around the globe, and other benefits to society. The group's current focus is directed towards the synthesis of innovative nanostructured materials for supercapacitors, fuel cells and batteries.
Zhong L. Wang's research group at Georgia Institute of Technology focuses on the fundamental science in the physical and chemical processes in nanomaterials growth, unique properties of nanosystems, novel in-situ measurement techniques, and new applications of nano-scale objects.
A cooperative effort of 8 institutions, the nanomedicine development center focuses on a model nucleoprotein machine that carries out non-homologous end joining (NHEJ) of DNA double strand breaks. This machine has a simple structure and significant clinical relevance.
The Nanostructured Materials Lab is an interdisciplinary research team focused on the study and fabrication of synthetic 'smart' materials and biomaterials on the nanoscale.