Posted: July 27, 2009

With nanomaterials and innovative techniques, German consortium revolutionizes printing technology

(Nanowerk News) With nanoparticulate functional materials and innovative printing pro-cesses, researchers from BASF SE, Heidelberger Druckmaschinen AG (Heidelberg) and Darmstadt Technical University are revolutionizing printing technology. Organic electronic products of future potential, such as photovoltaic films or bendable light-emitting diodes, head their list of achievements.
As part of the "Forum Organic Electronics" Excellence Cluster sponsored by the German Federal Ministry of Education and Research (BMBF), the partners in the NanoPEP project (Nano-structuring & Plastic Electronics Precision Printing Platform) are planning to present the first printed results within three years.
“The electronics of the future are flexible and bendable. It will soon be possible to print low-cost and resource-conserving electronic components with gentle methods on flexible substrates. Utilizing innovative processes and materials on which we are currently working, we are creating a new range of uses for printing technology in Organic Electronics. Working on the modular principle, we can provide numerous modules for cost-efficient mass production,” says BASF Project Leader Prof. Dr. Bernd Sachweh.
Organic Electronics is based on conductive polymers or even smaller molecules from organic chemistry and is regarded as one of the key technologies of the future. Its uses range from organic circuits and chips through photovoltaics to organic light emitting diodes. One of the many applications for printed electronics is smart labels that are equipped with sensors. These transponders, which can be printed together with an antenna on films, can be used to measure temperature and atmospheric humidity, an important aspect for the shipment and storage of goods.
Although simple integrated circuits can already be printed today, the challenge lies in producing flexible electronics. For these applications, functional materials – conductive organic molecules – have to be printed in just nanometer-thick, defect-free and very homogeneous layers on top of each other onto flexible plastic or paper substrates. These requirements far exceed those of graphic printing.
“Our long-term objective is to develop printing machines for printed electronics. We are convinced that only printing processes will enable us to meet the cost targets and allow us to manufacture organic electronics at competitive prices for the consumer market,” says Project Leader Dr. Gerd Junghans of Heidelberger Druckmaschinen.
One main focus of research in the Excellence Cluster is the development of hybrid materials consisting of inorganic and organic components. BASF SE is developing new production processes for the manufacture of nanoscale functional materials such as polymer-enhanced zinc oxide. These materials form certain structures or autonomously arrange themselves into shapes and patterns offering new properties for printing technology. Special emphasis is being placed on researching multicomponent systems comprising several materials, as well as integrated processes used to manufacture formulations of materials for Organic Electronics.
With their special properties such as uniform conductivity, nanoparticles are ideal for meeting the high quality standards imposed by Organic Electronics. The nanoparticles used for this purpose are bound in liquids. This technology eliminates direct contact with these materials, ensures their safe handling and allows environmentally friendly production of innovative electronic products.
In a three-stage approach from the laboratory scale to the production environment, experts are optimizing the interplay between materials, application and printing process. All the parties involved benefit from the geographical proximity to the project partners in the Excellence Cluster: situated close to the Rhein-Neckar metropolitan region, BASF SE, Heidelberger Druckmaschinen AG and Darmstadt Technical University can rapidly exchange research results. Altogether twenty research scientists from the metropolitan region are involved in the project.
The “Forum Organic Electronics” Excellence Cluster is a cooperative network of three DAX companies, eight international corporations, five medium-sized companies and eleven research institutes and colleges, including two elite universities. The objectives of the Excellence Cluster are to create the world's leading development and production center for Organic Electronics, one of the most attractive places for top-flight researchers and young academics to work as well as the world's leading innovation center for knowledge transfer and company start-ups. The 27 companies, universities and research institutes are cooperating in the research projects for the technology of the future, Organic Electronics, which is being sponsored by the BMBF to the amount of €40 million.
About BASF
BASF is the world’s leading chemical company: The Chemical Company. Its portfolio ranges from chemicals, plastics and performance products to agricultural products, fine chemicals as well as oil and gas. As a reliable partner BASF helps its customers in virtually all industries to be more successful. With its high-value products and intelligent solutions, BASF plays an important role in finding answers to global challenges such as climate protection, energy efficiency, nutrition and mobility. BASF posted sales of more than €62 billion in 2008 and had approximately 97,000 employees as of the end of the year. BASF shares are traded on the stock exchanges in Frankfurt (BAS), London (BFA) and Zurich (AN).
About Heidelberger Druckmaschinen
With a global market share of over 40 percent in the sheetfed offset press market, Heidelberger Druckmaschinen AG (Heidelberg) is the world's leading solution provider for the print media industry. All over the world, the name Heidelberg is synonymous with state-of-the art technology, top quality, and closeness to the customer. The core business of this technology group covers the whole value-added and process chain in the sheetfed offset sector. Heidelberg develops and produces precision printing presses, platesetters, postpress equipment, and software for integrating all the printshop processes. Environmental protection has an enduring importance in this regard. Solutions for the development, production, and utilization of presses help to conserve resources, reduce emissions, and cut wastage. The Heidelberg portfolio also provides general and consulting services ranging from spare parts and consumables to the sale of remarketed equipment, and training at the Print Media Academy. In financial year 2008/2009, Heidelberg recorded sales of EUR 2.999 billion. As at March 31, 2009, the Heidelberg Group had a workforce of 18,926 worldwide, including 707 trainees.
About Darmstadt Technical University
The Institute for Printing Presses and Printing Methods (IDD) is part of the Department of Mechanical Engineering of Darmstadt Technical University. The IDD pursues transcorporate research in the fields of machine construction, process technology and economic sciences accompanying the rapid development of printing press construction and the print media. One main focus is on functional printing, in which the limits of printing technology are explored and extended with the aim of making printing technology viable as a mass production process for electronics.
Source: BASF