Jan 16, 2011 | |
A first look at flight in 2025 |
|
(Nanowerk News) In late 2010, NASA awarded contracts to three teams — Lockheed Martin, Northrop Grumman, The Boeing Company — to study advanced concept designs for aircraft that could take to the skies in the year 2025. | |
At the time of the award, the team gave NASA a sneak peek of the particular design they plan to pursue. | |
![]() |
|
Artist's concept of an aircraft that could enter service in 2025 from the team led by Northrop Grumman. (Image: NASA/Northrop Grumman) | |
Each design looks very different, but all final designs have to meet NASA's goals for less noise, cleaner exhaust and lower fuel consumption. Each aircraft has to be able to do all of those things at the same time, which requires a complex dance of tradeoffs between all of the new advanced technologies that will be on these vehicles. | |
The proposed aircraft will also have to operate safely in a more modernized air traffic management system. | |
And each design has to fly up to 85 percent of the speed of sound; cover a range of approximately 7,000 miles; and carry between 50,000 and 100,000 pounds of payload, either passengers or cargo. | |
For the rest of this year, each team will be exploring, testing, simulating, keeping and discarding innovations and technologies to make their design a winner. | |
Beauty of Future Airplanes is More than Skin Deep | |
An 18-month NASA research effort to visualize the passenger airplanes of the future has produced some ideas that at first glance may appear to be old fashioned. Instead of exotic new designs seemingly borrowed from science fiction, familiar shapes dominate the pages of advanced concept studies which four industry teams completed for NASA's Fundamental Aeronautics Program in April 2010. | |
Look more closely at these concepts for airplanes that may enter service 20 to 25 years from now and you'll see things that are quite different from the aircraft of today. | |
Just beneath the skin of these concepts lie breakthrough airframe and propulsion technologies designed to help the commercial aircraft of tomorrow fly significantly quieter, cleaner, and more fuel-efficiently, with more passenger comfort, and to more of America's airports. | |
You may see ultramodern shape memory alloys, ceramic or fiber composites, carbon nanotube or fiber optic cabling, self-healing skin, hybrid electric engines, folding wings, double fuselages and virtual reality windows. | |
![]() |
|
The process of starting with many possible solutions and narrowing it down to just a few. (Image: NASA/Northrop Grumman Systems Corporation) | |
"Standing next to the airplane, you may not be able to tell the difference, but the improvements will be revolutionary," said Richard Wahls, project scientist for the Fundamental Aeronautics Program's Subsonic Fixed Wing Project at NASA's Langley Research Center in Hampton, Va. "Technological beauty is more than skin deep." | |
In October 2008, NASA asked industry and academia to imagine what the future might bring and develop advanced concepts for aircraft that can satisfy anticipated commercial air transportation needs while meeting specific energy efficiency, environmental and operational goals in 2030 and beyond. The studies were intended to identify key technology development needs to enable the envisioned advanced airframes and propulsion systems. | |
NASA's goals for a 2030-era aircraft, compared with an aircraft entering service today, are: | |
|
|
The teams were led by General Electric, Massachusetts Institute of Technology, Northrop Grumman and The Boeing Company. Here are some highlights from their final reports: | |
|
|
NASA did not specify future commercial air transportation needs as domestic or global. All four teams focused on aircraft sized for travel within a single continent because their business cases showed that small- and medium-sized planes will continue to account for the largest percentage of the overall fleet in the future. One team, however, did present a large hybrid wing concept for intercontinental transport. | |
All of the teams provided "clear paths" for future technology research and development, said Ruben Del Rosario, principal investigator for the Subsonic Fixed Wing Project at NASA's Glenn Research Center in Cleveland. "Their reports will make a difference in planning our research portfolio. We will identify the common themes in these studies and use them to build a more effective strategy for the future," Del Rosario said. | |
These are some of the common themes from the four reports: | |
|
|
The teams recommended a variety of improvements in lightweight composite structures, heat- and stress-tolerant engine materials, and aerodynamic modeling that can help bring their ideas to reality. NASA is weighing the recommendations against its objective of developing aeronautics technologies that can be applied to a broad range of aircraft and operating scenarios for the greatest public benefit. | |
"This input from our customers has provided us with well thought-out scenarios for our vision of the future, and it will help us place our research investment decisions squarely in the mainstream," said Jaiwon Shin, associate administrator for aeronautics research at NASA Headquarters in Washington. | |
"Identifying those necessary technologies will help us establish a research roadmap to follow in bringing these innovations to life during the coming years," Shin said. | |
The next step in NASA's effort to design the aircraft of 2030 is a second phase of studies to begin developing the new technologies that will be necessary to meet the national goals related to an improved air transportation system with increased energy efficiency and reduced environmental impact. The agency received proposals from the four teams in late April and expects to award one or two research contracts for work starting in 2011. | |
NASA managers also will reassess the goals for 2030 aircraft to determine whether some of the crucial technologies will need additional time to move from laboratory and field testing into operational use. The four teams managed to meet either the fuel burn or the noise goal with their concepts, not both. | |
A companion research effort looked at concepts for a new generation of supersonic transport aircraft capable of meeting NASA's noise, emissions and fuel efficiency goals for 2030. NASA envisions a broader market for supersonic travel, with aircraft carrying more passengers to improve economic viability while meeting increasingly stringent environmental requirements. | |
Teams led by The Boeing Company and Lockheed Martin evaluated market conditions, design goals and constraints, conventional and unconventional configurations, and enabling technologies to create proposed roadmaps for research and development activities. Both teams produced concepts for aircraft that can carry more than 100 passengers at cruise speeds of more than 1.6 Mach and a range of up to 5,000 miles. |
Source: NASA |
Subscribe to a free copy of one of our daily
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.
Nanowerk Newsletter Email Digests
with a compilation of all of the day's news.