CIC nanoGUNE's SPINTROS project awarded prestigious Starting Grant prize for innovative ideas in electronics

(Nanowerk News) The leader of the CIC nanoGUNE nanodevices team received the prestigious award for scientific research, a Starting Grant of 1.3 million euros for the SPINTROS project. The European Research Council (ERC) concedes these grants to innovative and "risky" ideas at the frontier of knowledge and which, in the long term, can give rise to revolutionary developments and applications.
This grant awards novelty in the researcher's own idea and, with the panel taking into account the curriculum of the scientific leader as well as availability of the technological resources of the centre. As Dr Hueso pointed out, the envisaged research would be impossible to undertake if nanoGUNE did not have the infrastructure and complex equipment with which it is equipped, besides its excellent multidisciplinary research teams.
The fundamental aim of the project, led by Dr. Luis Hueso, leader of the CIC nanoGUNE nanodevices team and known as SPINTROS, acronym for "Spin Transport in Organic Semiconductors", is to explore news materials and functions in order to design and develop new electronic devices which will result in an authentic revolution compared to the current systems based on silicon and which are close to the limits of their development capacity.
The project, to be drawn up at nanoGUNE, focuses on the design tasks, manufacture and study of electronic devices at a nanometric scale in just one molecule. Thus, as Dr Hueso explains, "we are facing the challenge of manufacturing electronic devices in which the functional element is a single molecule. A multitude of problems can be solved, both scientific and as well as technical (how to connect the molecule to a conducting wire, for example), which can open doors to applications that are today unachievable such as spintronics or quantum computation". With the SPINTROS project, it is hoped to anticipate and understand a viable alternative for application in electronics, giving rise to a new era in this field.
Spintronics is an area of electronics that focuses on the applications of the spin of an electron. It is expected to play a determining role in post-CMOS "Complementary Metal Oxide Semiconductor" electronics (from 2020) although all its potential in many fields still remains to be seen. Particularly important is the transport over long distances and the manipulation of the spin of electrons.
Most integrated circuits that are made currently use CMOS technology. This includes microprocessors, memories, digital processors for signals and many other types of integrated circuits. But their development has a limit and it is expected that spintronics will go beyond these limits and provide substantial advances.
Certain organic semiconductors (OS) are currently known, being present in some electronic application niches (OLED screens) and solar cells. These organic semiconductors have characteristics that make them suitable for the transport and control of spin but we are still far from having the knowledge necessary for considering applications. It is anticipated that, in the future, the features of chips designed for certain tasks will be based on the spin of electrons, instead of on their charge, as is what happens currently.
Dr Hueso's project will develop new basic knowledge about spin-dependent transport in nanostructures. At the same time, new ways of making post-CMOS electronic devices are envisaged. Dr Hueso aims to understand and control the transport of spin in organic semiconductors, which could also enable the use of spintronics in commercial electronic devices in the future.
Source: Elhuyar Fundazioa